Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 23, pp 20354–20359 | Cite as

Effect of thermal annealing and cooling rate on CBD grown CdS thin films

  • Raees A. Gani Shaikh
  • Sagar A. More
  • Gauri G. Bisen
  • Sandesh R. Jadkar
  • Jaydeep V. Sali
  • Sanjay S. GhoshEmail author
Article
  • 18 Downloads

Abstract

CdS films were deposited by CBD on a glass substrate by using CdI2 as a Cd+ source, thiourea as an S source and NH4OH as the complexing agent. The effect of slow and rapid cooling on the films after thermal annealing was investigated in the present study. X-ray diffraction and Raman spectra of the films suggest that thermal annealing followed by slow cooling gives CdS with enhanced crystallinity and reduced strain and dislocation density as compared to the films where they were cooled rapidly after thermal annealing. The results were supported by scanning electron microscopy and UV–Vis absorption spectroscopy. Hall Effect measurement shows the lowest resistivity and highest mobility obtained in the case of a slowly cooled sample as compared to the rapidly cooled sample. Carrier concentration in the range of about 1011 (cm−3) was found, and all the samples of CdS were of n-type conductivity.

Notes

Supplementary material

10854_2019_2238_MOESM1_ESM.docx (201 kb)
Supplementary material 1 (DOCX 200 kb)

References

  1. 1.
    J. Britt, C. Ferekides, Appl. Phys. Lett. 62, 2851–2852 (1993)CrossRefGoogle Scholar
  2. 2.
    D.J. Coyle, H.A. Blaydes, R.S. Northey, J.E. Pickett, K.R. Nagarkar, R. Zhao, J.O. Gardner, Prog. Photovolt. 21(2), 173–186 (2013).  https://doi.org/10.1002/pip CrossRefGoogle Scholar
  3. 3.
    W.J. Jeong, S.K. Kim, G.C. Park, Thin Solid Films 506–507, 180–183 (2006).  https://doi.org/10.1016/j.tsf.2005.08.213 CrossRefGoogle Scholar
  4. 4.
    T. Slimani, E. Bachir, F. Cherkaoui, E. Moursli, Energy Proced. 84, 127–133 (2015).  https://doi.org/10.1016/j.egypro.2015.12.305 CrossRefGoogle Scholar
  5. 5.
    H. Zhan, J.K. Li, Y.F. Cheng, Optik 126, 1411–1414 (2015).  https://doi.org/10.1016/j.ijleo.2014.07.119 CrossRefGoogle Scholar
  6. 6.
    U. Pal, R. Silva-González, G. Martínez-Montes, M. Gracia-Jiménez, M.A. Vidal, S. Torres, Thin Solid Films 305, 345–350 (1997).  https://doi.org/10.1016/S0040-6090(97)00124-7 CrossRefGoogle Scholar
  7. 7.
    C.T. Tsai, D.S. Chuu, G.L. Chen, S.L. Yang, J. Appl. Phys. 79, 9105–9109 (1996).  https://doi.org/10.1063/1.362645 CrossRefGoogle Scholar
  8. 8.
    J. Hiie, T. Dedova, V. Valdna, K. Muska, Thin Solid Films 511, 443–447 (2006)CrossRefGoogle Scholar
  9. 9.
    B.R. Sankapal, R.S. Mane, C.D. Lokhande, Mater. Res. Bull. 35, 177–184 (2000).  https://doi.org/10.1016/S0025-5408(00)00210-5 CrossRefGoogle Scholar
  10. 10.
    W. Yang, Z. Wu, Z. Lu, X. Yang, L. Song, Microelectron. Eng. 83, 1971–1974 (2006).  https://doi.org/10.1016/j.mee.2006.02.002 CrossRefGoogle Scholar
  11. 11.
    Z. Rizwan, A. Zakaria, M.S.M. Ghazali, A. Jafari, F. Ud Din, R. Zamiri, Int. J. Mol. Sci. 12, 1293–1305 (2011).  https://doi.org/10.3390/ijms12021293 CrossRefGoogle Scholar
  12. 12.
    J.R. Mann, N. Vora, I.L. Repins, Sol. Energy Mater. Sol. Cells 94, 333–337 (2010).  https://doi.org/10.1016/j.solmat.2009.10.009 CrossRefGoogle Scholar
  13. 13.
    A.S.R. Chesman, N.W. Duffy, A. Martucci, L. De Oliveira Tozi, T.B. Singh, J.J. Jasieniak, J. Mater. Chem. C 2, 3247–3253 (2014).  https://doi.org/10.1039/c3tc32189d CrossRefGoogle Scholar
  14. 14.
    H. Jun-Feng, F. Gan-Hua, V. Krishnakumar, L. Cheng, W. Jaegermann, J. Mater. Sci.: Mater. Electron. 24, 2695–2700 (2013).  https://doi.org/10.1007/s10854-013-1157-7 CrossRefGoogle Scholar
  15. 15.
    N. Maticiuc, M. Kukk, N. Spalatu, T. Potlog, M. Krunks, V. Valdna, J. Hiie, Energy Proced. 44, 77–84 (2014).  https://doi.org/10.1016/j.egypro.2013.12.012 CrossRefGoogle Scholar
  16. 16.
    R.R. Prabhu, M.A. Khadar, Bull. Mater. Sci. 31(3), 511–515 (2008)CrossRefGoogle Scholar
  17. 17.
    V.P. Nandakumar, C. Vijayan, M. Rajalakshmi, A.K. Arora, Y.V.G.S. Murti, Physica E 11, 377–383 (2001).  https://doi.org/10.1016/S1386-9477(01)00157-6 CrossRefGoogle Scholar
  18. 18.
    H. Metin, R. Esen, J. Cryst. Growth 258, 141–148 (2003).  https://doi.org/10.1016/S0022-0248(03)01518-5 CrossRefGoogle Scholar
  19. 19.
    F. Liu, Y. Lai, J. Liu, B. Wang, S. Kuang, Z. Zhang, J. Li, Y. Liu, J. Alloys Compd. 493, 305–308 (2010).  https://doi.org/10.1016/j.jallcom.2009.12.088 CrossRefGoogle Scholar
  20. 20.
    H. Khallaf, I.O. Oladeji, G. Chai, L. Chow, Thin Solid Films 516, 7306–7312 (2008).  https://doi.org/10.1016/j.tsf.2008.01.004 CrossRefGoogle Scholar
  21. 21.
    A. Abdolahzadeh Ziabari, F.E. Ghodsi, Sol. Energy Mater. Sol. Cells 105, 249–262 (2012).  https://doi.org/10.1016/j.solmat.2012.05.014 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Raees A. Gani Shaikh
    • 1
  • Sagar A. More
    • 1
  • Gauri G. Bisen
    • 1
  • Sandesh R. Jadkar
    • 2
  • Jaydeep V. Sali
    • 1
  • Sanjay S. Ghosh
    • 1
    Email author
  1. 1.Optoelectronics Laboratory, Department of PhysicsKavayitri Bahinabai Chaudhari North Maharashtra UniversityJalgaonIndia
  2. 2.Department of PhysicsUniversity of PunePuneIndia

Personalised recommendations