Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 23, pp 20345–20353 | Cite as

Unconventional high permittivity and relaxor like anomaly in (Sr, Ce, Pr)TiO3 solid solution

  • Waqar-Haider-Khan
  • Amir Sohail Khan
  • Tauqeer Ahmad
  • Nikola NovakEmail author
  • Muneeb-Ur-Rahman
  • Xiao-Qiang Song
  • Ghulam Saddiq
  • Burhan UllahEmail author
Article
  • 51 Downloads

Abstract

In this study, non-stoichiometric solid solution, Sr1–1.5(x+y)CexPryTiO3 abbreviated as (Sr, Ce, Pr)TiO3 (with 0.05 ≤ x ≤ 0.35 and y = 0.05, sintered in N2/H2 with 99% N2 and 1% H2) were prepared via a conventional solid-state method. By introducing (Ce0.25Pr0.05)3+/4+ on the A-site, the structure symmetry of the ceramic could be reduced, confirming cubic to tetragonal phase transition. Using Rietveld refinement and electron diffraction (TEM), the tetragonal phase was assigned to P4/mmm space group which posses a center of symmetry (centrosymmetric tetragonal unit cell). A small opening of hysteresis loop at higher Ce doping is assumed to be a caused by defect dipoles and conductivity. The dielectric anomalies were observed in all compositions, therefore, we assume that they are not related to structural phase transition but rather to some conductivity processes.

Notes

Acknowledgements

This fundamental research work was supported by the Higher Education Commission of Pakistan under initial start-up research grant program (21-2106/SRGP/R&D/HEC/2018) and the European Union’s Horizon 2020 research and innovation program under the Marie Skłodow-ska-Curie Grant Agreement No. 778072 and the Slovenian Research Agency under program P1-0125.

References

  1. 1.
    K.A. Müller, H. Burkard, Phys. Rev. B 19, 3593–3602 (1979)Google Scholar
  2. 2.
    J.G. Bednorz, K.A. Müller, Phys. Rev. Lett. 52, 2289–2292 (1984)Google Scholar
  3. 3.
    Z. Wang, M. Cao, Z. Yao, Q. Zhang, Z. Song, W. Hu, Q. Xu, H. Hao, H. Liu, Z. Yu, J. Eur. Ceram. Soc. 34, 1755–1760 (2014)Google Scholar
  4. 4.
    A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, S.H. Jabarov, V.V. Korovushkin, S.V. Trukhanov, E.L. Trukhanova, Ceram. Int. 43, 12822–12827 (2017)Google Scholar
  5. 5.
    S.V. Trukhanov, A.V. Trukhanov, L.V. Panina, V.G. Kostishyn, V.A. Turchenko, E.L. Trukhanova, A.V. Trukhanov, T.I. Zubar, V.M. Ivanov, D.I. Tishkevich, D.A. Vinnik, S.A. Gudkova, D.S. Klygach, M.G. Vakhitov, P. Thakur, A. Thakur, Y. Yang, J. Magn. Magn. Mater. 466, 393–405 (2018)CrossRefGoogle Scholar
  6. 6.
    EU-Directive 2011/65/EU, Off. J. Eur. Union 2011; L 174:88Google Scholar
  7. 7.
    Z. Zou, X. Lan, W.Z. Lu, G.F. Fan, X. Wang, X.C. Wang, P. Fu, W. Lei, Ceram. Int. 42(14), 16387–16391 (2016)Google Scholar
  8. 8.
    A.V. Trukhanov, S.V. Trukhanov, L.V. Panina, V.G. Kostishyn, I.S. Kazakevich, A.V. Trukhanov, E.L. Trukhanova, V.O. Natarov, V.A. Turchenko, M.M. Salem, A.M. Balagurov, J. Magn. Magn. Mater. 426, 487–496 (2017)Google Scholar
  9. 9.
    S.V. Trukhanov, A.V. Trukhanov, M.M. Salem, E.L. Trukhanova, L.V. Panina, V.G. Kostishyn, M.A. Darwish, A.V. Trukhanov, T.I. Zubar, D.I. Tishkevich, V. Sivakov, D.A. Vinnik, S.A. Gudkova, C. Singh, Ceram. Int. 44, 21295–21302 (2018)Google Scholar
  10. 10.
    X. Wang, Q. Hu, L. Li, X. Lu, J. Appl. Phys. 112, 044106 (2012)Google Scholar
  11. 11.
    J. Rödel, W. Jo, K.T.P. Seifert, E.-M. Anton, T. Granzow, D. Damjanovic, J. Am. Ceram. Soc. 92, 1153–1177 (2009)Google Scholar
  12. 12.
    G.A. Rossetti Jr., A.G. Khachaturyan, Appl. Phys. Lett. 91, 072909 (2007)Google Scholar
  13. 13.
    W. Liu, X. Ren, Phys. Rev. Lett. 103, 257602 (2009)Google Scholar
  14. 14.
    A.A. Heitmann, G.A. Rossetti Jr., J. Am. Ceram. Soc. 97, 1661–1685 (2014)Google Scholar
  15. 15.
    M.C. Ehmke, S.N. Ehrlich, J.E. Blendell, K.J. Bowman, J. Appl. Phys. 111, 124110 (2012)Google Scholar
  16. 16.
    M. Acosta, N. Khakpash, T. Someya, N. Novak, W. Jo, H. Nagata, G.A. Rossetti, J. Rödel, Phys. Rev. B 91, 104108 (2015)Google Scholar
  17. 17.
    C. Ma, H. Guo, S.P. Beckman, X. Tan, Phys. Rev. Lett. 109, 107602 (2012)Google Scholar
  18. 18.
    Y. Hiruma, H. Nagata, T. Takenaka, J. Appl. Phys. 104, 124106 (2008)Google Scholar
  19. 19.
    K. Yoshii, Y. Hiruma, H. Nagata, T. Takenaka, Jpn. J. Appl. Phys. 45, 4493–4496 (2006)Google Scholar
  20. 20.
    A. Durán, E. Martínez, J.A. Díaz, J.M. Siqueiros, J. Appl. Phys. 97, 104109 (2005)Google Scholar
  21. 21.
    R. Ranjan, R. Hackl, A. Chandra, E. Schmidbauer, D. Trots, H. Boysen, Phys. Rev. B 76, 224109 (2007)Google Scholar
  22. 22.
    F. Li, D. Lin, Z. Chen, Z. Cheng, J. Wang, C. Li, Z. Xu, Q. Huang, X. Liao, L.-Q. Chen, T.R. Shrout, S. Zhang, Nat. Mater. 17, 349–354 (2018)Google Scholar
  23. 23.
    N. Zhong, P.H. Xiang, D.Z. Sun, X.L. Dong, Mater. Sci. Eng. B 116, 140–145 (2005)Google Scholar
  24. 24.
    C.C. Wang, C.M. Lei, G.J. Wang, X.H. Sun, T. Li, S.G. Huang, H. Wang, Y.D. Li, J. Appl. Phys. 113, 094103 (2013)Google Scholar
  25. 25.
    C. Ang, Z. Yu, J. Appl. Phys. 91, 1487–1494 (2002)Google Scholar
  26. 26.
    Z. Yu, C. Ang, L.E. Cross, Appl. Phys. Lett. 74, 3044–3046 (1999)Google Scholar
  27. 27.
    A. Tkach, J.S. Amaral, V.S. Amaral, P.M. Vilarinho, J. Eur. Ceram. Soc. 37, 2391–2397 (2017)Google Scholar
  28. 28.
    B. Ullah, W. Lei, X.Q. Song, X.H. Wang, W.Z. Lu, Ceram. Int. 43, 16376–16383 (2017)Google Scholar
  29. 29.
    V.V. Lemanov, E.P. Smirnova, A.V. Sotnikov, M. Weihnacht, Appl. Phys. Lett. 77, 4205–4207 (2000)Google Scholar
  30. 30.
    B. Ullah, W. Lei, X.Q. Song, X.H. Wang, W.Z. Lu, J. Alloys Compd. 728, 623–630 (2017)Google Scholar
  31. 31.
    Z. Wang, M. Cao, Q. Zhang, H. Hao, Z. Yao, Z. Wang, Z. Song, Y. Zhang, W. Hu, H. Liu, S. Zhang, J. Am. Ceram. Soc. 98, 476–482 (2015)Google Scholar
  32. 32.
    Z. Yu, C. Ang, Appl. Phys. Lett. 80, 643–645 (2002)Google Scholar
  33. 33.
    I.O. Troyanchuk, S.V. Trukhanov, H. Szymczak, K. Baerner, J. Phys. Condens. Matter 12, L155–L158 (2000)Google Scholar
  34. 34.
    S.V. Trukhanov, I.O. Troyanchuk, I.M. Fita, H. Szymczak, K. Bärner, J. Magn. Magn. Mater. 237, 276–282 (2001)Google Scholar
  35. 35.
    R. Shannon, Acta Crystallogr. A 32, 751–767 (1976)Google Scholar
  36. 36.
    B. Ullah, W. Lei, Q.S. Cao, Z.Y. Zou, X.K. Lan, X.H. Wang, W.Z. Lu, J. Am. Ceram. Soc. 99, 3286–3292 (2016)Google Scholar
  37. 37.
    M.J. Akhtar, Z.U.N. Akhtar, R.A. Jackson, C.R.A. Catlow, J. Am. Ceram. Soc. 78, 421–428 (1995)Google Scholar
  38. 38.
    B. Ullah, M. Ur-Rahman, R. Khan, Zulfiqar. J. Mater. Sci. Mater. Electron. 30, 4572–4579 (2019)Google Scholar
  39. 39.
    S.V. Trukhanov, J. Mater. Chem. 13, 347–352 (2003)Google Scholar
  40. 40.
    V. Doroshev, V. Borodin, V. Kamenev, A. Mazur, T. Tarasenko, A. Tovstolytkin, S. Trukhanov, J. Appl. Phys. 104, 093909 (2008)Google Scholar
  41. 41.
    B. Ullah, A. Sayyadi-Shahraki, A. Ullah, R. Khan, Ceram. Int. 45, 3634–3642 (2019)Google Scholar
  42. 42.
    M.B. Smith, K. Page, T. Siegrist, P.L. Redmond, E.C. Walter, R. Seshadri, L.E. Brus, M.L. Steigerwald, J. Am. Chem. Soc. 130, 6955–6963 (2008)Google Scholar
  43. 43.
    R. Khan, C.I.L. de Zulfiqar, T. Araujo, S.A. Khan, E. Khattak, A. Ahmed, B. Khan, G. Ullah, K. Khan, A. Safeen, S.A. Safeen, J. Raza, Mater. Sci. Mater. Electron. 30, 3396–3404 (2019)Google Scholar
  44. 44.
    J. Tao, M. Mu, X. Wang, B. Ullah, F. Chen, K. An, H. Su, W. Lu, J. Mater. Sci. Mater. Electron. 28, 16888–16894 (2017)Google Scholar
  45. 45.
    W. Mao, Q. Yao, Y. Fan, Y. Wang, X. Wang, Y. Pu, X.A. Li, J. Alloys Compd. 784, 117–124 (2019)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Waqar-Haider-Khan
    • 1
  • Amir Sohail Khan
    • 1
  • Tauqeer Ahmad
    • 1
  • Nikola Novak
    • 2
    Email author
  • Muneeb-Ur-Rahman
    • 1
  • Xiao-Qiang Song
    • 3
    • 4
  • Ghulam Saddiq
    • 1
  • Burhan Ullah
    • 1
    • 3
    • 4
    Email author
  1. 1.Department of PhysicsIslamia College PeshawarPeshawarPakistan
  2. 2.Department of Condensed Matter PhysicsJožef Stefan InstituteLjubljanaSlovenia
  3. 3.School of Optical and Electronic InformationHuazhong University of Science and TechnologyWuhanChina
  4. 4.Key Lab of Functional Materials for Electronic Information (B)Ministry of EducationWuhanChina

Personalised recommendations