Impact of size and defects on structure, optical and photoluminescence properties of Ni-doped SnO2 nanoparticles co-doped with Cu

  • R. Ariya Nachiar
  • S. MuthukumaranEmail author


Single Ni-doped SnO2 and Ni, Cu two elements simultaneously doped SnO2 have been synthesized by simple chemical co-precipitation method. The structural (morphological) change-over from rod-like structure (Ni single doped) to mixture of spherical and hexagonal structure by dual doping was evidenced by the enhanced XRD intensity ratio of (110) and (101) planes and scanning electron microscopic (SEM) images. The reduced crystallite size from 13.2 nm (single doped) to 8.6 nm caused by Cu addition (Ni, Cu dual doping) was supported by the increase of micro-strain, shift of absorption edge towards and lower wavelength side and generation of defect states. The elevated band gap by Cu substitution was mainly due to the strong quantum size effect. The noticed infra-red (IR) peaks around 648–693 cm−1 and the adjustment of its position and intensity confirmed the substitution of Cu in Sn–Ni–O network. The strong ultra-violet (UV) and visible emissions observed in Ni, Cu co-doped SnO2 was discussed based on the conversion of electrons between the bands through defect states like oxygen vacancies.



  1. 1.
    V.K. Tomer, S. Duhan, Sens. Actuators B Chem. 223, 750–760 (2016)CrossRefGoogle Scholar
  2. 2.
    A. Tereshchenko, M. Bechelany, R. Viter, V. Khranovskyy, V. Smyntyna, N. Starodub, Sens. Actuators B Chem. 229, 664–677 (2016)CrossRefGoogle Scholar
  3. 3.
    C.V. Reddy, B. Babu, J. Shim, Mater. Sci. Eng., B 223, 131–142 (2017)CrossRefGoogle Scholar
  4. 4.
    Y. Zhang, A. Kolmakov, S. Chretien, H. Metiu, M. Moskovits, Nano Lett. 4, 403–407 (2004)CrossRefGoogle Scholar
  5. 5.
    Y. Wang, H.C. Zeng, J.Y. Lee, Adv. Mater. 18, 645–649 (2006)CrossRefGoogle Scholar
  6. 6.
    Y. Wang, J.Y. Lee, H.C. Zeng, Chem. Mater. 17, 3899–3903 (2005)CrossRefGoogle Scholar
  7. 7.
    D. Chu, Y. Masuda, T. Ohji, K. Kato, Chem. Eng. J. 168, 955–958 (2011)CrossRefGoogle Scholar
  8. 8.
    C. Gu, W. Guan, X. Liu, L. Gao, L. Wang, J.-J. Shim, J. Huang, J. Alloys Compd. 692, 855–864 (2017)CrossRefGoogle Scholar
  9. 9.
    J. Joseph, V. Mathew, K.E. Abraham, Chin. J. Phys. 45, 84–97 (2007)Google Scholar
  10. 10.
    S. Nilavazhagan, S. Muthukumaran, M. Ashokkumar, J. Mater. Sci.: Mater. Electron. 26, 3989–3996 (2015)Google Scholar
  11. 11.
    Y.J. Chen, L. Yu, D.D. Feng, M. Zhuo, M. Zhang, E.D. Zhang, Sens. Actuators B Chem. 166, 61–67 (2012)CrossRefGoogle Scholar
  12. 12.
    W.X. Jin, S.Y. Ma, Z.Z. Tie, J.J. Wei, J. Luo, X.H. Jiang, Sens. Actuators B Chem. 213, 171–180 (2015)CrossRefGoogle Scholar
  13. 13.
    Y. Zheng, J. Wang, P. Yao, Sens. Actuators B Chem. 156, 723–730 (2011)CrossRefGoogle Scholar
  14. 14.
    A. Sharma, M. Varshney, S. Kumar, K.D. Verma, R. Kumar, Nanomater. Nanotechnol. 1, 29–33 (2011)CrossRefGoogle Scholar
  15. 15.
    M. Kuppan, S. Kaleemulla, N.M. Rao, N.S. Krishna, M.R. Begam, M. Shobana, Adv. Condens. Matter. Phys. (2014). CrossRefGoogle Scholar
  16. 16.
    M. Bhatnagar, V. Kaushik, A. Kaushal, M. Singh, B.R. Mehta, AIP Adv. 6, 095321 (2016)CrossRefGoogle Scholar
  17. 17.
    A. Kar, S. Kundu, A. Patra, J. Phys. Chem. C 115, 118 (2011)CrossRefGoogle Scholar
  18. 18.
    M.S. Bannur, A. Antony, K.I. Maddani, P. Poornesh, K.B. Manjunatha, S.D. Kulkarni, K.S. Choudhari, Superlattice Microstruct. 122, 156–164 (2018)CrossRefGoogle Scholar
  19. 19.
    R.A. Nachiar, S. Muthukumaran, Opt. Laser Technol. 112, 458–466 (2019)CrossRefGoogle Scholar
  20. 20.
    N. Ahmad, S. Khan, J. Alloys Compd. 720, 502–509 (2017)CrossRefGoogle Scholar
  21. 21.
    N.M. Shaalan, D. Hamad, A.Y. Abdel-Latief, M.A. Abdel-Rahim, Prog. Nat. Sci. Mater. Int. 26, 145–151 (2016)CrossRefGoogle Scholar
  22. 22.
    K. Nomura, J. Okabayashi, K. Okamura, Y. Yamada, J. Appl. Phys. 110, 1–5 (2011)CrossRefGoogle Scholar
  23. 23.
    B. Babu, C.V. Reddy, J. Shim, R.V.S.S.N. Ravikumar, J. Park, J. Mater. Sci.: Mater. Electron. 27, 5197–5203 (2016)Google Scholar
  24. 24.
    Z.M. Tian, S.L. Yuan, J.H. He, P. Li, S.Q. Zhang, C.H. Wang, Y.Q. Wang, S.Y. Yin, L. Liu, J. Alloys Compd. 466, 26–30 (2008)CrossRefGoogle Scholar
  25. 25.
    S. Chen, X. Zhao, H. Xie, J. Liu, L. Duan, X. Ba, J. Zhao, Appl. Surf. Sci. 258, 3255–3259 (2012)CrossRefGoogle Scholar
  26. 26.
    S. Nilavazhagan, S. Muthukumaran, M. Ashokkumar, Opt. Mater. 37, 425–432 (2014)CrossRefGoogle Scholar
  27. 27.
    B. Sathyaseelan, K. Senthilnathan, T. Alagesan, R. Jayavel, K. Sivakumar, Mater. Chem. Phys. 124, 1046–1050 (2010)CrossRefGoogle Scholar
  28. 28.
    M.S. Kim, J.B. Yang, J. Medvedeva, W.B. Yelon, P.E. Parris, W.J. James, J. Phys.: Condens. Matter 20, 255228–255234 (2008)Google Scholar
  29. 29.
    B. Babu, A.N. Kadam, R.V. Ravikumar, Ch. Byon, J. Alloys Compd. 703, 330–336 (2017)CrossRefGoogle Scholar
  30. 30.
    E. Ziegler, A. Heinrich, H. Oppermann, G. Stover, Phys. Status Solidi A 66, 635–648 (1981)CrossRefGoogle Scholar
  31. 31.
    K. Subramanyam, N. Sreelekha, G. Murali, D.A. Reddy, R.P. Vijayalakshmi, Phys. B 454, 86–92 (2014)CrossRefGoogle Scholar
  32. 32.
    V. Kumar, K. Singh, M. Jain, A. Kumar, J. Sharma, A. Vij, A. Thakur, Appl. Surf. Sci. 444, 552–558 (2018)CrossRefGoogle Scholar
  33. 33.
    A. Parretta, M.K. Jayaraj, A. Di Nocera, S. Loreti, L. Quercia, A. Agati, Phys. Status Solidi (a) 155, 399–404 (1996)CrossRefGoogle Scholar
  34. 34.
    G. Rajkumar, V. Dhivya, S. Mahalaxmi, K. Rajkumar, G.K. Sathishkumar, R. Karpagam, J. Non-Cryst, Solids 493, 108–118 (2018)Google Scholar
  35. 35.
    S. Aravindan, G. Rajkumar, V. Rajendran, N. Rajendran, J. Am. Ceram. Soc. 95, 3490–3500 (2012)CrossRefGoogle Scholar
  36. 36.
    J. Jouhannaud, J. Rossignol, D. Stuerga, J. Solid State Chem. 181, 1439–1444 (2008)CrossRefGoogle Scholar
  37. 37.
    A. Bhattacharjee, M. Ahmaruzzaman, Mater. Lett. 139, 418–421 (2015)CrossRefGoogle Scholar
  38. 38.
    S. Gnanam, V. Rajendran, J. Sol-Gel. Sci. Technol. 56, 128–133 (2010)CrossRefGoogle Scholar
  39. 39.
    M. Sudha, S. Senthilkumar, R. Hariharan, A. Suganthi, M. Rajarajan, J. Sol-Gel. Sci. Technol. 65, 301–310 (2013)CrossRefGoogle Scholar
  40. 40.
    R. Hariharan, S. Senthilkumar, A. Suganthi, M. Rajarajan, J. Photochem. Photobiol., B 116, 56–65 (2012)CrossRefGoogle Scholar
  41. 41.
    T. Passuello, M. Pedroni, F. Piccinelli, S. Polizzi, P. Marzola, S. Tambalo, G. Conti, D. Benati, F. Vetrone, M. Bettinelli, A. Speghini, Nanoscale 4, 7682–7689 (2012)CrossRefGoogle Scholar
  42. 42.
    C. Yue-Jian, T. Juan, X. Fei, Z. Jia-Bi, G. Ning, Z. Yi-Hua, D. Ye, G.E. Liang, Drug Dev. Ind. Pharm. 36, 1235–1244 (2010)CrossRefGoogle Scholar
  43. 43.
    M. Parthibavarman, K. Vallalperuman, S. Sathishkumar, M. Durairaj, K. Thavamani, J. Mater. Sci.: Mater. Electron. 25, 730–735 (2014)Google Scholar
  44. 44.
    P. Pascariu, A. Airinei, M. Grigoras, N. Fifere, L. Sacarescu, N. Lupu, L. Stoleriu, J. Alloys Compd. 668, 65–72 (2016)CrossRefGoogle Scholar
  45. 45.
    S. Chen, X. Zhao, H. Xie, J. Liu, L. Duan, X. Ba, J. Zhao, Appl. Surf. Sci. 258, 3255–3259 (2012)CrossRefGoogle Scholar
  46. 46.
    S. Sarmah, A. Kumar, Indian J. Phys. 84, 1211–1221 (2010)CrossRefGoogle Scholar
  47. 47.
    M. Silambarasan, S. Saravanan, N. Ohtani, T. Soga, Jpn. J. Appl. Phys. 53, 05FB16 (2014)CrossRefGoogle Scholar
  48. 48.
    Wu Yung-Chiun Her, Yan-Ru Lin Jer-Yau, Song-Yeu Tsai, Appl. Phys. Lett. 89, 043115 (2006)CrossRefGoogle Scholar
  49. 49.
    L.M. Fang, X.T. Zu, Z.J. Li, S. Zhu, C.M. Liu, L.M. Wang, F. Gao, J. Mater. Sci.: Mater. Electron. 19, 868–874 (2008)Google Scholar
  50. 50.
    F.H. Aragon, J.A.H. Coaquira, P. Hidalgo, S.L.M. Brito, D. Gouvea, R.H.R. Castro, J. Phys.: Condens. Matter 22, 496003 (2010)Google Scholar
  51. 51.
    A. Galdikas, V. Jasutis, S. Kaciulis, G. Mattogno, A. Mironas, V. Olevano, D. Senuliene, A. Setkus, Sens. Actuators B Chem. 43, 140–146 (1997)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.PG and Research Department of PhysicsGovernment Arts CollegeMaduraiIndia

Personalised recommendations