Advertisement

Influences of sputtering power and annealing temperature on the structural and optical properties of Al2O3:CuO thin films fabricated by radio frequency magnetron sputtering technique

  • S. Ponmudi
  • R. SivakumarEmail author
  • C. Sanjeeviraja
  • C. Gopalakrishnan
Article
  • 43 Downloads

Abstract

In the present study, we report the high visible to near infrared (NIR) transparent Al2O3:CuO thin films prepared using homemade high purity sputtering target by radio frequency magnetron sputtering technique with sputtering powers of 100, 200 and 300 W at room temperature and the prepared films were annealed at 300, 600 and 1000 °C for 1 h. X-ray diffraction analysis confirmed the amorphous formation of the deposited films. The obtained X-ray profiles of the sputtering target are refined using Rietveld refinement technique through the program package of general structure analysis system with EXPGUI interface. Optical study showed the sputtering power and annealing temperature persuaded red shift in absorption edge and as a consequence the shrinkage in optical band gap was observed. The obtained high average transparency of 87–96% in the wavelength range 400–1100 nm validates the transmittance of as-deposited and annealed Al2O3:CuO thin films is well extended into the near infrared region. The obtained optical transmittance and absorbance data were utilized to calculate various optical parameters.

Notes

Acknowledgements

One of the authors R.S gratefully acknowledges the Department of Education, Government of India for the financial support under RUSA—Phase 2.0 Scheme (Ref. No.: F. 24-51/2014-U, Policy (TNMulti-Gen), dt. 09.10.2018). In addition, R. S sincerely acknowledges the Department of Science and Technology, New Delhi, India for the financial support in general and infrastructure facilities sponsored under PURSE 2nd Phase programme (Ref. No.: SR/PURSE Phase 2/38 (G) dt. 21.02.2017).

References

  1. 1.
    K. Koski, J. Holsa, P. Juliet, Thin Solid Films 339, 240 (1999)CrossRefGoogle Scholar
  2. 2.
    R.N. Das, A. Bandyopadhyay, S. Bose, J. Am. Ceram. Soc. 84, 2421 (2001)CrossRefGoogle Scholar
  3. 3.
    E.O. Filatova, A.S. Konashuk, J. Phys. Chem. C 119, 20755 (2015)CrossRefGoogle Scholar
  4. 4.
    Z.H. Ibupoto, K. Khun, X. Liu, M. Willander, Mater. Sci. Eng., C 33, 3889 (2013)CrossRefGoogle Scholar
  5. 5.
    A.A. Ogwu, E. Bouquerel, O. Ademosu, S. Moh, E. Crossan, F. Placido, J. Phys. D 38, 266 (2005)CrossRefGoogle Scholar
  6. 6.
    K. Santra, C.K. Sarkar, M.K. Mukherjee, B. Ghosh, Thin Solid Films 213, 226 (1992)CrossRefGoogle Scholar
  7. 7.
    E. Baudet, M. Sergent, P. Nemec, C. Cardinaud, E. Rinnert, K. Michel, L. Jouany, B. Bureau, V. Nazabal, Sci. Rep. 7, 1 (2017)CrossRefGoogle Scholar
  8. 8.
    K. Munawar, M.A. Mansoor, W.J. Basirun, M. Misran, N.M. Huang, M. Mazhar, RSC Adv. 7, 15885 (2017)CrossRefGoogle Scholar
  9. 9.
    S. Ponmudi, R. Sivakumar, C. Sanjeeviraja, C. Gopalakrishnan, K. Jeyadheepan, Appl. Surf. Sci. 483, 601 (2019)CrossRefGoogle Scholar
  10. 10.
    N. Nikolic, T. Sreckovic, M.M. Ristic, J. Eur. Ceram. Soc. 21, 2071 (2001)CrossRefGoogle Scholar
  11. 11.
    H.M. Rietveld, J. Appl. Cryst. 2, 65 (1969)CrossRefGoogle Scholar
  12. 12.
    A.C. Larson, R.B. Von Dreele, Los Alamos National Laboratory Report LAUR 86–748 (2000)Google Scholar
  13. 13.
    B.H. Toby, J. Appl. Cryst. 34, 210 (2001)CrossRefGoogle Scholar
  14. 14.
    K. Punitha, R. Sivakumar, C. Sanjeeviraja, V. Sathe, V. Ganesan, J. Appl. Phys. 116, 213502 (2014)CrossRefGoogle Scholar
  15. 15.
    S. Ponmudi, R. Sivakumar, C. Sanjeeviraja, C. Gopalakrishnan, K. Jeyadheepan, Mater. Res. Express 6, 066422 (2019)CrossRefGoogle Scholar
  16. 16.
    R. Swanepoel, J. Phys. E 16, 1214 (1983)CrossRefGoogle Scholar
  17. 17.
    A.N. Banerjee, C.K. Ghosh, S. Das, K.K. Chattopadhyay, Phys. B 370, 264 (2005)CrossRefGoogle Scholar
  18. 18.
    E.M. Alkoy, P.J. Kelly, Vacuum 79, 221 (2005)CrossRefGoogle Scholar
  19. 19.
    K.N. Manjunatha, S. Paul, Appl. Surf. Sci. 352, 10 (2015)CrossRefGoogle Scholar
  20. 20.
    S. Ponmudi, R. Sivakumar, C. Sanjeeviraja, AIP Conf. Proc. 1728, 020288 (2016)CrossRefGoogle Scholar
  21. 21.
    S. Ponmudi, R. Sivakumar, C. Sanjeeviraja, C. Gopalakrishnan, K. Jeyadheepan, Appl. Surf. Sci. 466, 703 (2019)CrossRefGoogle Scholar
  22. 22.
    H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, H. Hosono, Nature 389, 939 (1997)CrossRefGoogle Scholar
  23. 23.
    S. Ilican, M. Caglar, Y. Caglar, Appl. Surf. Sci. 256, 7204 (2010)CrossRefGoogle Scholar
  24. 24.
    A. Rabhi, Y. Fadhli, M. Kanzari, Vacuum 112, 59 (2015)CrossRefGoogle Scholar
  25. 25.
    S. Ponmudi, R. Sivakumar, C. Sanjeeviraja, Mater. Today 9, 193 (2019)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • S. Ponmudi
    • 1
  • R. Sivakumar
    • 2
    Email author
  • C. Sanjeeviraja
    • 1
  • C. Gopalakrishnan
    • 3
  1. 1.Department of PhysicsAlagappa Chettiar Government College of Engineering and TechnologyKaraikudiIndia
  2. 2.Department of PhysicsAlagappa UniversityKaraikudiIndia
  3. 3.Nanotechnology Research CentreSRM Institute of Science and TechnologyKattankulathurIndia

Personalised recommendations