Effect of annealing temperature on structural and electrical properties of Al/Nb-doped TiO2 Schottky diodes on Pt–Si substrates

  • Shihui YuEmail author
  • Chunmei Zhang
  • Pan Yang
  • Muying Wu
  • Yongtao SunEmail author
  • Lingxia Li


The Nb-doped TiO2 (NTO) thin films were deposited on Pt-coated Si substrates for fabrication of Al/NTO Schottky diodes using RF magnetron sputtering technique. The effects of annealing temperature on the microstructure, surface morphological and electrical properties are systematically investigated. X-ray diffraction pattern shows that the crystallinity of NTO thin films can be improved by adjusting the annealing temperature. The surface morphological analysis shows that the grain size and roughness can be affected by the annealing temperature. According to I–V characteristics, the ideal factor, barrier height and series resistance of Al/NTO Schottky diodes calculated by various methods are consistent well. The ideal factor and series resistance decrease with annealing temperature rising from 200 to 600 °C. When the NTO thin films are annealed at 600 °C, the Al/NTO Schottky diodes have good rectifying behaviors with an ideal factor of 4.97, a Schottky barrier height of 1.04 eV and a relatively low series resistance of 235 Ω. These results indicate that the prepared Al/NTO Schottky diodes have potential application prospects in rectifying devices.



This work was supported by the National Natural Science Foundation of China (Grant No. 61701338), Natural Science Foundation of Tianjin City (Grant No. 18JCQNJC01300), Foundation (B) for Peiyang Scholar-Young Core Faculty of Tianjin University (Grant No. 2018XRG-0020), Scientific Research Foundation for High-Level Talents (Innovative Team) of Dongguan University of Technology (Grant No. KCYCXPT2017003).


  1. 1.
    S.O. Tan, H. Tecimer, O. Çiçek, Comparative investigation on the effects of organic and inorganic interlayers in Au/n-GaAs Schottky diodes. IEEE Trans. Electron. Dev. 64, 984–990 (2017)CrossRefGoogle Scholar
  2. 2.
    Y.H. Jung, H. Zhang, I.K. Lee, J.H. Shin, T. Kim, Z. Ma, Releasable high-performance GaAs Schottky diodes for gigahertz operation of flexible bridge rectifier. Adv. Electron. Mater. 5, 1800772 (2019)CrossRefGoogle Scholar
  3. 3.
    C. Martínez-Domingo, S. Conti, L. Terés, H.L. Gomes, E. Ramon, Novel flexible inkjet-printed metal-insulator-semiconductor organic diode employing silver electrodes. Org. Electron. 62, 335–341 (2018)CrossRefGoogle Scholar
  4. 4.
    J. Chen, J. Lv, Q. Wang, Electronic properties of Al/MoO3/p-InP enhanced Schottky barrier contacts. Thin Solid Films 616, 145–150 (2016)CrossRefGoogle Scholar
  5. 5.
    P.P. Thapaswini, R. Padma, N. Balaram, B. Bindu, V.R. Reddy, Modification of electrical properties of Au/n-type InP Schottky diode with a high-k Ba0.6Sr0.4TiO3 interlayer. Superlattices Microstruct. 93, 82–91 (2016)CrossRefGoogle Scholar
  6. 6.
    Q. He, W. Mu, B. Fu, Z. Jia, S. Long, Z. Yu, G. Jian, Schottky barrier rectifier based on (100)β-Ga2O3 and its DC and AC characteristics. IEEE Electron Device Lett. 39, 556–559 (2018)CrossRefGoogle Scholar
  7. 7.
    X. Guan, W. Hu, M.A. Haque, N. Wei, Z. Liu, A. Chen, T. Wu, Light-responsive ion-redistribution-induced resistive switching in hybrid perovskite Schottky junctions. Adv. Funct. Mater. 28, 1704665 (2018)CrossRefGoogle Scholar
  8. 8.
    V.D. Blank, V.S. Bormashov, S.A. Tarelkin, S.G. Buga, M.S. Kuznetsov, D.V. Teteruk, A.P. Volkov, Power high-voltage and fast response Schottky barrier diamond diodes. Diam. Relat. Mater. 57, 32–36 (2015)CrossRefGoogle Scholar
  9. 9.
    H. Fu, X. Huang, H. Chen, Z. Lu, I. Baranowski, Y. Zhao, Ultra-low turn-on voltage and on-resistance vertical GaN-on-GaN Schottky power diodes with high mobility double drift layers. Appl. Phys. Lett. 111, 152102 (2017)CrossRefGoogle Scholar
  10. 10.
    D. Donoval, M. Barus, M. Zdimal, Analysis of I–V measurements on PtSi-Si Schottky structures in a wide temperature range. Solid State Electron. 34, 1365–1373 (1991)CrossRefGoogle Scholar
  11. 11.
    M. Raja, J. Chandrasekaran, M. Balaji, B. Janarthanan, Impact of annealing treatment on structural and dc electrical properties of spin coated tungsten trioxide thin films for Si/WO3/Ag junction diode. Mater. Sci. Semicond. Proc. 56, 145–154 (2016)CrossRefGoogle Scholar
  12. 12.
    V. Janardhanam, I. Jyothi, S.N. Lee, V.R. Reddy, C.J. Choi, Rectifying and breakdown voltage enhancement of Au/n-GaN Schottky diode with Al-doped ZnO films and its structural characterization. Thin Solid Films 676, 125–132 (2019)CrossRefGoogle Scholar
  13. 13.
    C. Liu, M. Peng, A. Yu, J. Liu, M. Song, Y. Zhang, J. Zhai, Interface engineering on p-CuI/n-ZnO heterojunction for enhancing piezoelectric and piezo-phototronic performance. Nano Energy 26, 417–424 (2016)CrossRefGoogle Scholar
  14. 14.
    V. Postica, F. Schütt, R. Adelung, O. Lupan, Schottky diode based on a single carbon-nanotube-ZnO hybrid tetrapod for selective sensing applications. Adv. Mater. Interfaces 4, 1700507 (2017)CrossRefGoogle Scholar
  15. 15.
    S. Lu, J. Qi, Y. Gu, S. Liu, Q. Xu, Z. Wang, Y. Zhang, Influence of the carrier concentration on the piezotronic effect in a ZnO/Au Schottky junction. Nanoscale 7, 4461–4467 (2015)CrossRefGoogle Scholar
  16. 16.
    S. Lu, Q. Liao, J. Qi, S. Liu, Y. Liu, Q. Liang, Y. Zhang, The enhanced performance of piezoelectric nanogenerator via suppressing screening effect with Au particles/ZnO nanoarrays Schottky junction. Nano Res. 9, 372–379 (2016)CrossRefGoogle Scholar
  17. 17.
    C. Wang, F. Chang, X. Zhang, R. Zhan, Y. Liu, Minimization of defects in Nb-doped TiO2 photocatalysts by molten salt flux. Ceram. Int. 44, 10249–10257 (2018)CrossRefGoogle Scholar
  18. 18.
    Y. Liu, H. Ran, J. Fan, X. Zhang, J. Mao, G. Shao, Fabrication and photovoltaic performance of niobium doped TiO2 hierarchical microspheres with exposed 001 facets and high specific surface area. Appl. Surf. Sci. 410, 241–248 (2017)CrossRefGoogle Scholar
  19. 19.
    Y. Jiao, A. Hellman, Y. Fang, S. Gao, M. Käll, Schottky barrier formation and band bending revealed by first-principles calculations. Sci. Rep. 5, 11374 (2015)CrossRefGoogle Scholar
  20. 20.
    X. Niu, W. Yan, H. Zhao, J. Yang, Synthesis of Nb doped TiO2 nanotube/reduced graphene oxide heterostructure photocatalyst with high visible light photocatalytic activity. Appl. Surf. Sci. 440, 804–813 (2018)CrossRefGoogle Scholar
  21. 21.
    V. Dediu, V. Musat, I. Cernica, Nb-TiO2/ZnO nanostructures for chemoresistive alcohol sensing. Appl. Surf. Sci. 488, 70–76 (2019)CrossRefGoogle Scholar
  22. 22.
    M. Fallah, M.R. Zamani-Meymian, M. Rabbani, Influence of two gradual steps of vacuum annealing on structural and opto-electronic characteristics of Nb-doped TiO2 transparent conducting oxide. Superlattices Microstruct. 123, 242–250 (2018)CrossRefGoogle Scholar
  23. 23.
    X. Yin, Y. Guo, Z. Xue, P. Xu, M. He, B. Liu, Performance enhancement of perovskite-sensitized mesoscopic solar cells using Nb-doped TiO2 compact layer. Nano Res. 8, 1997–2003 (2015)CrossRefGoogle Scholar
  24. 24.
    A.M. Alotaibi, S. Sathasivam, B.A. Williamson, A. Kafizas, C. Sotelo-Vazquez, A. Taylor, I.P. Parkin, Chemical vapor deposition of photocatalytically active pure brookite TiO2 thin films. Ceram. Int. 30, 1353–1361 (2018)Google Scholar
  25. 25.
    M.D. Wiggins, M.C. Nelson, C.R. Aita, Phase development in sputter deposited titanium dioxide. J. Vac. Sci. Technol., A 14, 772–776 (1996)CrossRefGoogle Scholar
  26. 26.
    A.K. Yadav, N. Khatun, S. Kumar, C.M. Tseng, S. Biring, S. Sen, Size and strain dependent anatase to rutile phase transition in TiO2 due to Si incorporation. J. Mater. Sci.: Mater. Electron. 28, 19017–19024 (2017)Google Scholar
  27. 27.
    S.K. Gautam, A. Das, R.G. Singh, V.V.S. Kumar, F. Singh, Carrier transport mechanism of highly-sensitive niobium doped titanium dioxide/p-Si heterojunction photodiode under illuminations by solar simulated light. J. Appl. Phys. 120, 214502 (2016)CrossRefGoogle Scholar
  28. 28.
    K. Sarakinos, J. Alami, S. Konstantinidis, High power pulsed magnetron sputtering: a review on scientific and engineering state of the art. Surf. Coat. Technol. 204, 1661–1684 (2010)CrossRefGoogle Scholar
  29. 29.
    D. Raoufi, A. Kiasatpour, H.R. Fallah, A.S.H. Rozatian, Surface characterization and microstructure of ITO thin films at different annealing temperatures. Appl. Surf. Sci. 253, 9085–9090 (2007)CrossRefGoogle Scholar
  30. 30.
    S.T. Tay, X.H. Jiang, C.H.A. Huan, A.T.S. Wee, R. Liu, Influence of annealing temperature on ferroelectric properties of SrBi2Ta2O9 thin films prepared by off-axis radio frequency magnetron sputtering. J. Appl. Phys. 88, 5928–5934 (2000)CrossRefGoogle Scholar
  31. 31.
    S.H. Kim, D.J. Kim, J.P. Maria, A.I. Kingon, S.K. Streiffer, J. Im, A.R. Krauss, Influence of Pt heterostructure bottom electrodes on SrBi2Ta2O9 thin film properties. Appl. Phys. Lett. 76, 496–498 (2000)CrossRefGoogle Scholar
  32. 32.
    S. Kyoung, E.S. Jung, M.Y. Sung, Post-annealing processes to improve inhomogeneity of Schottky barrier height in Ti/Al 4H-SiC Schottky barrier diode. Microelectron. Eng. 154, 69–73 (2016)CrossRefGoogle Scholar
  33. 33.
    H.B. Michaelson, The work function of the elements and its periodicity. J. Appl. Phys. 48, 4729–4733 (1977)CrossRefGoogle Scholar
  34. 34.
    L.H. Park, S.J. Kang, S.I. Na, H.H. Lee, S.W. Kim, H. Hosono, H.K. Kim, Indium-free, acid-resistant anatase Nb-doped TiO2 electrodes activated by rapid-thermal annealing for cost-effective organic photovoltaics. Sol. Energy Mater. Sol. Cells 95, 2178–2185 (2011)CrossRefGoogle Scholar
  35. 35.
    E.H. Rhoderick, Metal-semiconductor contacts. IEE Proc. I Solid State Electron Devices 129, 1 (1982)CrossRefGoogle Scholar
  36. 36.
    A. Venter, M.E. Samiji, A.W.R. Leitch, Thermal stability of Ru, Pd and Al Schottky contacts to p-type 6H-SiC. Phys. Status Solidi C 1, 2264–2268 (2004)CrossRefGoogle Scholar
  37. 37.
    S.K. Mohanta, A. Nakamura, G. Tabares, A. Hierro, Á. Guzmán, E. Muñoz, J. Temmyo, Electrical characterization of Schottky contacts to n-MgZnO films. Thin Solid Films 548, 539–545 (2013)CrossRefGoogle Scholar
  38. 38.
    C. Li, Y. Bando, M. Liao, Y. Koide, D. Golberg, Visible-blind deep-ultraviolet Schottky photodetector with a photocurrent gain based on individual Zn2GeO4 nanowire. Appl. Phys. Lett. 97, 161102 (2010)CrossRefGoogle Scholar
  39. 39.
    R. Zhu, X. Zhang, J. Zhao, R. Li, W. Zhang, Influence of illumination intensity on the electrical characteristics and photoresponsivity of the Ag/ZnO Schottky diodes. J. Alloys Compd. 631, 125–128 (2015)CrossRefGoogle Scholar
  40. 40.
    L. Ferber, R. Stangl, J. Luther, An electrical model of the dye-sensitized solar cell. Sol. Energy Mater. Sol. Cells 53, 29–54 (1998)CrossRefGoogle Scholar
  41. 41.
    M. Ni, M.K. Leung, D.Y. Leung, K. Sumathy, Theoretical modeling of TiO2/TCO interfacial effect on dye-sensitized solar cell performance. Sol. Energy Mater. Sol. Cells 90, 2000–2009 (2006)CrossRefGoogle Scholar
  42. 42.
    J.H. Werner, H.H. Güttler, Barrier inhomogeneities at Schottky contacts. J. Appl. Phys. 69, 1522–1533 (1991)CrossRefGoogle Scholar
  43. 43.
    P. Cova, A. Singh, Temperature dependence of IV and CV characteristics of Ni/n-CdF2 Schottky barrier type diodes. Solid State Electron. 33, 11–19 (1990)CrossRefGoogle Scholar
  44. 44.
    H. Altuntaş, Ş. Altındal, S. Özçelik, H. Shtrikman, Electrical characteristics of Au/n-GaAs Schottky barrier diodes with and without SiO2 insulator layer at room temperature. Vacuum 83, 1060–1065 (2009)CrossRefGoogle Scholar
  45. 45.
    M. Aziz, J.F. Felix, N. Al Saqri, D. Jameel, F.S. Al Mashary, H.M. Albalawi, M. Henini, Electrical behavior of MBE grown interfacial misfit GaSb/GaAs heterostructures with and without te-doped interfaces. IEEE Trans. Electron Devices 62, 3980–3986 (2015)CrossRefGoogle Scholar
  46. 46.
    L. Du, J. Zhang, Y. Li, M. Xu, Q. Wang, A. Song, Q. Xin, High-performance flexible Schottky diodes based on sputtered InGaZnO. IEEE Trans. Electron Devices 65, 4326–4333 (2018)CrossRefGoogle Scholar
  47. 47.
    S.K. Cheung, N.W. Cheung, Extraction of Schottky diode parameters from forward current-voltage characteristics. Appl. Phys. Lett. 49, 85–87 (1986)CrossRefGoogle Scholar
  48. 48.
    L. Rajan, C. Periasamy, V. Sahula, Electrical characterization of Au/ZnO thin film Schottky diode on silicon substrate. Perspect. Sci. 8, 66–68 (2016)CrossRefGoogle Scholar
  49. 49.
    L. Agarwal, B.K. Singh, S. Tripathi, P. Chakrabarti, Fabrication and characterization of Pd/Cu doped ZnO/Si and Ni/Cu doped ZnO/Si Schottky diodes. Thin Solid Films 612, 259–266 (2016)CrossRefGoogle Scholar
  50. 50.
    H. Wang, P. Qin, G. Yi, X. Zu, L. Zhang, W. Hong, X. Chen, A high-sensitive ultraviolet photodetector composed of double-layered TiO2 nanostructure and Au nanoparticles film based on Schottky junction. Mater. Chem. Phys. 194, 42–48 (2017)CrossRefGoogle Scholar
  51. 51.
    N.A. Al Saqri, A. Mondal, J.F. Felix, Y.G. Gobato, V.O. Gordo, H. Albalawi, M.S.A. El-sadek, Investigation of defects in indium doped TiO2 thin films using electrical and optical techniques. J. Alloys Compd. 698, 883–891 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Microelectronics and Tianjin Key Laboratory of Imaging and Sensing Microelectronic TechnologyTianjin UniversityTianjinPeople’s Republic of China
  2. 2.School of Electronic Engineering and IntelligentizationDongguan University of TechnologyDongguanChina
  3. 3.Department of Mechanics and Tianjin Key Laboratory of Nonlinear Dynamics and ControlTianjin UniversityTianjinChina

Personalised recommendations