Bi-phase metallic cobalt with efficient broadband absorption in X and Ku bands

  • Jing Zhang
  • Yuchang SuEmail author
  • Hongzhi Zhang
  • Libo Wang
  • Qiushan Yu


Broadband and lightweight microwave absorbers have gained considerable research interest in overcoming electromagnetic interference pollution. Here, mixture of two phase (fcc and hcp) metallic cobalt powders with broadband absorption was synthesized through solvothermal method using ethylene glycol as the reducing agent. The effect of NaOH content on the structure and morphology of the prepared Co powders is investigated by X-ray diffraction and field-emission scanning electron microscopy. Ring samples of 7.00/3.04 mm of out/inner diameter were prepared with paraffin for microwave absorption testing by vector network analyzer. It was observed that the increase of NaOH content caused a relative higher generation of hcp-Co phase and formation of irregular microspheres. The reflection loss (RL) peak and effective absorbing bandwidth (EABW, RL ≤ − 10 dB) shifted towards lower frequency when the sample thickness increased from 1.00 to 3.00 mm with EABW covering almost all the C, X and Ku bands (4–18 GHz). The bi-phase Co prepared in a low base solution exhibited enhanced microwave absorption properties. The width of largest EABW has reached 6.33 GHz covering partial Ku band and almost all the X band with optimal RL of − 56.95 dB at a sample thickness of only 1.85 mm, which is superior to EABW of Co crystals reported earlier. We proposed that such a wide EABW is due to the fact of Z values closed to 1.0 (0.8 ≤ |Z| ≤ 1.2) at almost the whole frequency range. This indicates that the prepared bi-phase Co powders are excellent microwave absorbers with large bandwidth, have good prospects.



The authors are grateful to technicians at the School of Physics and Electronics of Hunan University for their technical supports.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflicts of interest.

Supplementary material

10854_2019_2181_MOESM1_ESM.docx (876 kb)
Supplementary material 1 (DOCX 876 kb)


  1. 1.
    M.S. Cao, Y.Z. Cai, P. He, J.C. Shu, W.Q. Cao, J. Yuan, 2D MXenes: electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem. Eng. J. 359, 1265–1302 (2019)CrossRefGoogle Scholar
  2. 2.
    J.T. Feng, Y.H. Hou, Y.C. Wang, L.C. Li, Synthesis of hierarchical ZnFe2O4@SiO2@RGO core-shell microspheres for enhanced electromagnetic wave absorption. ACS Appl. Mater. Interfaces. 9, 14103–14111 (2017)CrossRefGoogle Scholar
  3. 3.
    B. Zhao, X.Q. Guo, W.Y. Zhao, J.S. Deng, G. Shao, B.B. Fan, Z.Y. Bai, R. Zhang, Yolk-shell Ni@SnO2 composites with a designable interspace to improve the electromagnetic wave absorption properties. ACS Appl. Mater. Interfaces. 8, 28917–28925 (2016)CrossRefGoogle Scholar
  4. 4.
    K. Baek, S.Y. Lee, S.G. Doh, M. Kim, J.K. Hyun, Axial oxygen vacancy-regulated microwave absorption in micron-sized tetragonal BaTiO3 particles. J. Mater. Chem. C 6, 9749–9755 (2018)CrossRefGoogle Scholar
  5. 5.
    A.N. Hapishah, M.M. Syazwan, M.N. Hamidon, Synthesis and characterization of magnetic and microwave absorbing properties in polycrystalline cobalt zinc ferrite (Co0.5Zn0.5Fe2O4) composite. J. Mater. Sci. 29, 20573–20579 (2018)Google Scholar
  6. 6.
    L. Quan, F.X. Qin, D. Estevez, W. Lu, H. Wang, H.X. Peng, The role of graphene oxide precursor morphology in magnetic and microwave absorption properties of nitrogen-doped graphene. J. Phys. D 52, 305001 (2019)CrossRefGoogle Scholar
  7. 7.
    W.L. Song, L.Z. Fan, Z.L. Hou, K.L. Zhang, Y.B. Ma, M.S. Cao, A wearable microwave absorption cloth. J. Mater. Chem. C 5, 2432–2441 (2017)CrossRefGoogle Scholar
  8. 8.
    R.G. Liu, Y.X. Li, C.H. Li, J.Y. Wang, Z.H. Wang, Y.H. Zhang, F. Qi, X.F. Zhang, High performance microwave absorption through multi-scale metacomposite by intergrating Ni@C nanocapsules with millimetric polystyrene sphere. J. Phys. D 51, 365303 (2018)CrossRefGoogle Scholar
  9. 9.
    M. Rahimi-Nasrabadi, M.H. Mokarian, M.R. Ganjali, M.A. Kashi, S.A. Arani, Synthesis, characterization, magnetic and microwave absorption properties of iron–cobalt nanoparticles and iron–cobalt@polyaniline (FeCo@PANI) nanocomposites. J. Mater. Sci. 29, 12126–12134 (2018)Google Scholar
  10. 10.
    Y. Huang, J.D. Ji, Y. Chen, X. Li, J. He, X.W. Cheng, S.L. He, Y. Liu, J.P. Liu, Broadband microwave absorption of Fe3O4–BaTiO3 composites enhanced by interfacial polarization and impedance matching. Compos. Part B 163, 598–605 (2019)CrossRefGoogle Scholar
  11. 11.
    C.G. Hu, Z.Y. Mou, G.W. Lu, N. Chen, Z.L. Dong, M.J. Hu, L.T. Qu, 3D graphene-Fe3O4 nanocomposites with high-performance microwave absorption. Phys. Chem. Chem. Phys. 15, 13038–13043 (2013)CrossRefGoogle Scholar
  12. 12.
    Y.S. Kim, Y.H. Kim, Application of ferro-cobalt magnetic fluid for oil sealing. J. Magn. Magn. Mater. 267, 105–110 (2003)CrossRefGoogle Scholar
  13. 13.
    H. Chiriac, M. Tibu, A.E. Moga, D.D. Herea, Magnetic GMI sensor for detection of biomolecules. J. Magn. Magn. Mater. 293, 671–676 (2005)CrossRefGoogle Scholar
  14. 14.
    G.X. Tong, J.H. Yuan, W.H. Wu, Q. Hu, H.S. Qian, L.C. Li, J.P. Shen, Flower-like Co superstructures: morphology and phase evolution mechanism and novel microwave electromagnetic characteristics. CrystEngComm 14, 2071–2079 (2012)CrossRefGoogle Scholar
  15. 15.
    D.W. Xu, J.L. Liu, P. Chen, Q. Yu, J. Wang, S. Yang, X. Guo, In situ growth and pyrolysis synthesis of super-hydrophobic graphene aerogels embedded with ultrafine β-Co nanocrystals for microwave absorption. J. Mater. Chem. C 7, 3869–3880 (2019)CrossRefGoogle Scholar
  16. 16.
    H. Li, Z. Jin, H.Y. Song, S.J. Liao, Synthesis of Co submicrospheres self-assembled by Co nanosheets via a complexant-assisted hydrothermal approach. J. Magn. Magn. Mater. 322, 30–35 (2010)CrossRefGoogle Scholar
  17. 17.
    L. Guo, F. Liang, N. Wang, D.S. Kong, W.S. Ming, L. He, C.P. Chen, X.M. Meng, Z.Y. Wu, Preparation and characterization of ring-shaped Co nanomaterials. Chem. Mater. 20, 5163–5168 (2008)CrossRefGoogle Scholar
  18. 18.
    Y.J. Zhang, Y. Zhang, Z.H. Wang, D. Li, T.Y. Cui, W. Liu, Z.D. Zhang, Controlled synthesis of cobalt flowerlike architectures by a facile hydrothermal route. Eur. J. Inorg. Chem. 2008, 2733–2738 (2008)CrossRefGoogle Scholar
  19. 19.
    H.T. Yang, C.M. Shen, N.N. Song, Y.M. Wang, T.Z. Yang, H.J. Gao, Z.H. Cheng, Facile synthesis of hollow nano-spheres and hemispheres of cobalt by polyol reduction. Nanotechnology 21, 375602 (2010)CrossRefGoogle Scholar
  20. 20.
    C.Z. He, S. Qiu, X.Z. Wang, J.R. Liu, L.Q. Luan, W. Liu, M. Itoh, K. Machida, Facile synthesis of hollow porous cobalt spheres and their enhanced electromagnetic properties. J. Mater. Chem. 22, 22160–22166 (2012)CrossRefGoogle Scholar
  21. 21.
    G.H. Pan, J. Zhu, S.L. Ma, G.B. Sun, X.J. Yang, Enhancing the electromagnetic performance of Co through the phase-controlled synthesis of hexagonal and cubic Co nanocrystals grown on graphene. ACS Appl. Mater. Interfaces. 5, 12716–12724 (2013)CrossRefGoogle Scholar
  22. 22.
    J.S. Deng, S.M. Li, Y.Y. Zhou, L.Y. Liang, B. Zhao, X. Zhang, R. Zhang, Enhancing the microwave absorption properties of amorphous CoO nanosheet-coated Co (hexagonal and cubic phases) through interfacial polarizations. J. Colloid Interface Sci. 509, 406–413 (2018)CrossRefGoogle Scholar
  23. 23.
    R.L. Ji, C.B. Cao, Z. Chen, H.Z. Zhai, J. Bai, Solvothermal synthesis of CoxFe3−xO4 spheres and their microwave absorption properties. J. Mater. Chem. C 2, 5944–5953 (2014)CrossRefGoogle Scholar
  24. 24.
    J.W. Wang, X. Wang, Q. Peng, Y.D. Li, Synthesis and characterization of bismuth single-crystalline nanowires and nanospheres. Inorg. Chem. 43, 7552–7556 (2004)CrossRefGoogle Scholar
  25. 25.
    J. Chatterjee, M. Bettge, Y. Haik, C.J. Chen, Synthesis and characterization of polymer encapsulated Cu–Ni magnetic nanoparticles for hyperthermia applications. J. Magn. Magn. Mater. 293, 303–309 (2005)CrossRefGoogle Scholar
  26. 26.
    M.Y. Guan, J.H. Sun, C.L. Gao, X. Li, Z. Xu, A novel cobalt submicro-wire network and its magnetic properties. ChemPhysChem 8, 2182–2184 (2007)CrossRefGoogle Scholar
  27. 27.
    S.H. Yang, J.G. Yang, B.P. Zhang, Y.F. Chen, M.T. Tang, Preparation of ultrafine spheric Co powder by polyot reduction. J. Jishou Univ. (Nat. Sci. Ed.) 25, 30–34 (2004)Google Scholar
  28. 28.
    Y.C. Zhu, H.G. Zheng, Q. Yang, A.L. Pan, Z.P. Yang, Y.T. Qian, Growth of dendritic cobalt nanocrystals at room temperature. J. Cryst. Growth 260, 427–434 (2004)CrossRefGoogle Scholar
  29. 29.
    R. Yao, S.Y. Liao, C.L. Dai, Y.C. Liu, X.Y. Chen, F. Zheng, Preparation and characterization of novel glass–ceramic tile with microwave absorption properties from iron ore tailings. J. Magn. Magn. Mater. 378, 367–375 (2015)CrossRefGoogle Scholar
  30. 30.
    H.Q. Zhao, Y. Cheng, W. Liu, Z.Z. Yang, B.S. Zhang, G.B. Ji, Y.W. Du, The flaky porous Fe3O4 with tunable dimensions for enhanced microwave absorption performance in X and C bands. Nanotechnology 29, 295603 (2018)CrossRefGoogle Scholar
  31. 31.
    X.B. Xie, Y. Pang, H. Kikuchi, T. Liu, The synergistic effects of carbon coating and micropore structure on the microwave absorption properties of Co/CoO nanoparticles. Phys. Chem. Chem. Phys. 18, 30507–30514 (2016)CrossRefGoogle Scholar
  32. 32.
    S.L. Wen, Y. Liu, X.C. Zhao, J.W. Cheng, H. Li, Facile synthesis of novel cobalt particles by reduction method and their microwave absorption properties. Powder Technol. 264, 128–132 (2014)CrossRefGoogle Scholar
  33. 33.
    A. Khort, K. Podbolotov, R. Serrano-Garcia, Y. Gun’ko, One-step solution combustion synthesis of cobalt nanopowder in air atmosphere: the fuel effect. Inorg. Chem. 57, 1464–1473 (2018)CrossRefGoogle Scholar
  34. 34.
    X.F. Dong, M. Qi, Y. Tong, F. Ye, Solvothermal synthesis of single-crystalline hexagonal cobalt nanofibers with high coercivity. Mater. Lett. 128, 39–41 (2014)CrossRefGoogle Scholar
  35. 35.
    S.L. Wen, Y. Liu, X.C. Zhao, Z.Z. Fan, Synthesis, permeability resonance and microwave absorption of flake-assembled cobalt superstructure. J. Magn. Magn. Mater. 385, 182–187 (2015)CrossRefGoogle Scholar
  36. 36.
    W.S. Sun, H. Li, Y. Liu, X.C. Zhao, J.W. Cheng, S.L. Wen, Preparation and microwave absorption properties of spherical cobalt particles. Rare Metal Mater. Eng. 45, 3099–3103 (2016)CrossRefGoogle Scholar
  37. 37.
    M.L. Yang, Y. Yuan, W.L. Yin, S. Yang, Q.Y. Peng, J.J. Li, Y.B. Li, X.D. He, Co/CoO@C nanocomposites with a hierarchical bowknot-like nanostructure for high performance broadband electromagnetic wave absorption. Appl. Surf. Sci. 469, 607–616 (2019)CrossRefGoogle Scholar
  38. 38.
    J.S. Deng, X. Zhang, B. Zhao, Z.Y. Bai, S.M. Wen, S.M. Li, S.Y. Li, J. Yang, R. Zhang, Fluffy microrods to heighten the microwave absorption properties through tuning the electronic state of Co/CoO. J. Mater. Chem. C 6, 7128–7140 (2018)CrossRefGoogle Scholar
  39. 39.
    D.W. Liu, Y.C. Du, Z.N. Li, Y.H. Wang, P. Xu, H.H. Zhao, F.Y. Wang, C.L. Li, X.J. Han, Facile synthesis of 3D flower-like Ni microspheres with enhanced microwave absorption properties. J. Mater. Chem. C 6, 9615–9623 (2018)CrossRefGoogle Scholar
  40. 40.
    T. Shang, Q.S. Lu, L.M. Chao, Y.L. Qin, Y.H. Yun, G.H. Yun, Effects of ordered mesoporous structure and La-doping on the microwave absorbing properties of CoFe2O4. Appl. Surf. Sci. 434, 234–242 (2018)CrossRefGoogle Scholar
  41. 41.
    Y.B. Li, X.B. Zhou, J. Wang, Q.H. Deng, M.A. Li, S.Y. Du, Y.H. Han, J. Lee, Q. Huang, Facile preparation of in situ coated Ti3C2Tx/Ni0.5Zn0.5Fe2O4 composites and their electromagnetic performance. RSC Adv. 7, 24698–24708 (2017)CrossRefGoogle Scholar
  42. 42.
    Z.Z. Wang, H. Bi, P.H. Wang, M. Wang, Z.W. Liu, L. Shen, X.S. Liu, Magnetic and microwave absorption properties of self-assemblies composed of core-shell cobalt-cobalt oxide nanocrystals. Phys. Chem. Chem. Phys. 17, 3796–3801 (2015)CrossRefGoogle Scholar
  43. 43.
    N.N. Song, H.T. Yang, H.L. Liu, X. Ren, H.F. Ding, X.Q. Zhang, Z.H. Cheng, Exceeding natural resonance frequency limit of monodisperse Fe3O4 nanoparticles via superparamagnetic relaxation. Sci. Rep. 3, 3161 (2013)CrossRefGoogle Scholar
  44. 44.
    J.S. Deng, Q.B. Wang, Y.Y. Zhou, B. Zhao, R. Zhang, Facile design of a ZnO nanorod–Ni core–shell composite with dual peaks to tune its microwave absorption properties. RSC Adv. 7, 9294–9302 (2017)CrossRefGoogle Scholar
  45. 45.
    M.Z. Wu, Y.D. Zhang, S. Hui, T.D. Xiao, S.H. Ge, W.A. Hines, J.I. Budnick, G.W. Taylor, Microwave magnetic properties of Co50/(SiO2)50 nanoparticles. Appl. Phys. Lett. 80, 4404–4406 (2002)CrossRefGoogle Scholar
  46. 46.
    J.G. Li, J.J. Huang, Y. Qin, F. Ma, Magnetic and microwave properties of cobalt nanoplatelets. Mater. Sci. Eng., B 138, 199–204 (2007)CrossRefGoogle Scholar
  47. 47.
    X.L. Shi, M.S. Cao, J. Yuan, X.Y. Fang, Dual nonlinear dielectric resonance and nesting microwave absorption peaks of hollow cobalt nanochains composites with negative permeability. Appl. Phys. Lett. 95, 163108 (2009)CrossRefGoogle Scholar
  48. 48.
    F. Ma, Y. Qin, Y.Z. Li, Enhanced microwave performance of cobalt nanoflakes with strong shape anisotropy. Appl. Phys. Lett. 96, 202507 (2010)CrossRefGoogle Scholar
  49. 49.
    X. Liu, Y.L. Qiu, Y.T. Ma, H.F. Zheng, L.S. Wang, Q.F. Zhang, Y.Z. Chen, D.L. Peng, Facile preparation and microwave absorption properties of porous Co/CoO microrods. J. Alloys Compd. 721, 411–418 (2017)CrossRefGoogle Scholar
  50. 50.
    S.L. Wen, X.C. Zhao, Y. Liu, J.W. Cheng, H. Li, Synthesis of hierarchical sword-like cobalt particles and their microwave absorption properties. RSC Adv. 4, 40456–40463 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringCentral South UniversityChangshaPeople’s Republic of China

Personalised recommendations