Advertisement

Structural and dielectric behavior of Al-substituted CaCu3Ti4O12 ceramics with giant dielectric constant by spark plasma sintering

  • H. Mahfoz KotbEmail author
  • Mohamad M. Ahmad
  • Sara Aldabal
  • Adil Alshoaibi
  • Abdullah Aljaafari
Article
  • 10 Downloads

Abstract

The influence of Al substitution on the structural and dielectric properties of CaCu3Ti4−xAlxO12 (CCTAO, 0 ≤ x ≤ 0.09) has been investigated. CCTAO ceramics were prepared by spark plasma sintering (SPS) for 10 min at 975 °C of their precursor powders obtained by mechanochemical milling. X-ray diffraction and scanning electron microscopy revealed cubic crystal structure and an average grain size in the range ~ 300–550 nm for the prepared ceramics. Though the smaller grain size of SPS CCTAO compared to previously reported grain sizes for CCTO-related ceramics prepared by solid state reaction, SPS CCTAO samples exhibited giant dielectric constant values in the range 103–104 at room temperature and 10 kHz. Complex impedance spectroscopy measurements revealed an electrically heterogeneous structure for the investigated ceramics. Three types of dielectric responses were detected in the modulus spectrum of the samples. These responses were attributed to grains, domain-boundaries (DBs) and grain-boundaries (GBs) interfaces. These results indicated that the giant dielectric constant of the SPS CCTAO ceramics is closely related to Maxwell–Wagner polarization at DBs and GBs.

Notes

Acknowledgements

The author thanks the Deanship of Scientific Research in King Faisal University (Saudi Arabia) for funding for this research under Grant No. 186146.

References

  1. 1.
    M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, J. Solid State Chem. 151, 323–325 (2000)CrossRefGoogle Scholar
  2. 2.
    D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, Appl. Phys. Lett. 80, 2153–2155 (2002)CrossRefGoogle Scholar
  3. 3.
    T.B. Adams, D.C. Sinclair, A.R. West, J. Am. Ceram. Soc. 89, 3129–3135 (2006)CrossRefGoogle Scholar
  4. 4.
    C.C. Homes, T. Vogt, S.M. Shapiro, S. Wakimoto, M.A. Subramanian, A.P. Ramirez, Phys. Rev. B 67(092106), 1–4 (2003)Google Scholar
  5. 5.
    S. Krohns, P. Lunkenheimer, S. Meissner, A. Reller, B. Gleich, A. Rathgeber, T. Gaugler, H.U. Buhl, D.C. Sinclair, A. Loidl, Nat. Mater. 10, 899–901 (2011)CrossRefGoogle Scholar
  6. 6.
    T.-T. Fang, L.-T. Mei, J. Am. Ceram. Soc. 90, 638–664 (2007)CrossRefGoogle Scholar
  7. 7.
    J.-C. Zheng, A.I. Frenkel, L. Wu, J. Hanson, W. Ku, E.S. Božin, S.J.L. Billinge, Y. Zhu, Phys. Rev. B 81(144203), 1–19 (2010)Google Scholar
  8. 8.
    J.T. Irvine, D.C. Sinclair, A.R. West, Adv. Mater. 2, 132–138 (1990)CrossRefGoogle Scholar
  9. 9.
    R. Schmidt, M.C. Stennett, N.C. Hyatt, J. Pokorny, J. Prado-Gonjal, M. Li, D.C. Sinclair, J. Eur. Ceram. Soc. 32, 3313–3323 (2012)CrossRefGoogle Scholar
  10. 10.
    B.S. Prakash, K.B.R. Varma, J. Phys. Chem. Solids 68, 490–502 (2007)CrossRefGoogle Scholar
  11. 11.
    S.D. Hutagalung, M.I.M. Ibrahim, Z.A. Ahmad, Ceram. Int. 34, 939–942 (2008)CrossRefGoogle Scholar
  12. 12.
    J.Y. Li, X.T. Zhao, S.T. Li, M.A. Alim, J. Appl. Phys. 108(104104), 1–6 (2010)Google Scholar
  13. 13.
    M.M. Ahmad, K. Yamada, J. Appl. Phys. 115(154103), 1–6 (2014)Google Scholar
  14. 14.
    P. Thongbai, S. Maensiri, T. Yamwong, R. Yimnirun, J. Appl. Phys. 103(114107), 1–6 (2008)Google Scholar
  15. 15.
    W.-X. Yuan, S.K. Hark, J. Eur. Ceram. Soc. 32, 465–470 (2012)CrossRefGoogle Scholar
  16. 16.
    J.A. Cortés, G. Cotrim, S. Orrego, A.Z. Simões, M.A. Ramírez, J. Alloys Compd. 735, 140–149 (2018)CrossRefGoogle Scholar
  17. 17.
    J. Jumpatam, B. Putasaeng, T. Yamwong, P. Thongbai, S. Maensiri, Ceram. Int. 39, 1057–1064 (2013)CrossRefGoogle Scholar
  18. 18.
    R. Xue, G. Zhao, J. Chen, Z. Chen, D. Liu, Mater. Res. Bull. 76, 124–132 (2016)CrossRefGoogle Scholar
  19. 19.
    L. Tang, F. Xue, P. Guo, Z. Xin, Z. Luo, W. Li, Ceram. Int. 44, 18535–18540 (2018)CrossRefGoogle Scholar
  20. 20.
    R. Jia, X. Zhao, J. Li, X. Tang, Mater. Sci. Eng., B 185, 79–85 (2014)CrossRefGoogle Scholar
  21. 21.
    M.F. Ab Rahman, S.D. Hutagalung, Z.A. Ahmad, M.F. Ain, J.J. Mohamed, J. Mater. Sci.: Mater. Electron. 26, 3947–3956 (2015)Google Scholar
  22. 22.
    G. Du, F. Wei, W. Li, N. Chen, J. Eur. Ceram. Soc. 37, 4653–4659 (2017)CrossRefGoogle Scholar
  23. 23.
    S.W. Choi, S.H. Hong, Y.M. Kim, J. Am. Ceram. Soc. 90, 4009–4011 (2007)Google Scholar
  24. 24.
    L. Shengtao, W. Hui, L. Chunjiang, Y. Yang, L. Jianying, in Proceedings of 2011 International Conference on Electrical Insulating Materials (ISEIM) (IEEE, 2011), pp. 23–26Google Scholar
  25. 25.
    B. Li, X. Wang, L. Li, H. Zhou, X. Liu, X. Han, Y. Zhang, X. Qi, X. Deng, Mater. Chem. Phys. 83, 23–28 (2004)CrossRefGoogle Scholar
  26. 26.
    E.A. Olevsky, S. Kandukuri, L. Froyen, J. Appl. Phys. 102(114913), 1–12 (2007)Google Scholar
  27. 27.
    C.L. Song, Y.J. Wu, X.Q. Liu, X.M. Chen, J. Alloys Compd. 490, 605–608 (2010)CrossRefGoogle Scholar
  28. 28.
    J.O. Herrera Robles, C.A. Rodríguez González, S.D. de la Torre, L.E. Fuentes Cobas, P.E. García Casillas, H. Camacho Montes, J. Alloys Compd. 536, S511–S515 (2012)CrossRefGoogle Scholar
  29. 29.
    M.M. Ahmad, Ceram. Int. 41, 6398–6408 (2015)CrossRefGoogle Scholar
  30. 30.
    H. Lin, X. He, Y. Gong, D. Pang, Z. Yi, Ceram. Int. 44, 8650–8655 (2018)CrossRefGoogle Scholar
  31. 31.
    R. Kumar, M. Zulfequar, T.D. Senguttuvan, J. Mater. Sci.: Mater. Electron. 27, 5233–5237 (2016)Google Scholar
  32. 32.
    S.I.R. Costa, M. Li, J.R. Frade, D.C. Sinclair, RSC Adv. 3, 7030–7036 (2013)CrossRefGoogle Scholar
  33. 33.
    M.M. Ahmad, Appl. Phys. Lett. 102(232908), 1–4 (2013)Google Scholar
  34. 34.
    J. Jumpatam, B. Putasaeng, N. Chanlek, P. Kidkhunthod, P. Thongbai, S. Maensiri, P. Chindaprasirt, RSC Adv. 7, 4092–4101 (2017)CrossRefGoogle Scholar
  35. 35.
    C. Wang, W. Ni, D. Zhang, X. Sun, J. Wang, H. Li, N. Zhang, J. Electroceram. 36, 46–57 (2016)CrossRefGoogle Scholar
  36. 36.
    E. Abram, D. Sinclair, A. West, J. Electroceram. 10, 165–177 (2003)CrossRefGoogle Scholar
  37. 37.
    E. Barsoukov, J.R. Macdonald, Impedance Spectroscopy: Theory, Experiment, and Applications (Wiley, New York, 2005)CrossRefGoogle Scholar
  38. 38.
    J. Li, L. Hou, R. Jia, L. Gao, K. Wu, S. Li, J. Mater. Sci.: Mater. Electron. 26, 5085–5091 (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • H. Mahfoz Kotb
    • 1
    • 2
    Email author
  • Mohamad M. Ahmad
    • 1
    • 3
  • Sara Aldabal
    • 1
  • Adil Alshoaibi
    • 1
  • Abdullah Aljaafari
    • 1
  1. 1.Department of Physics, College of ScienceKing Faisal UniversityAl-HassaSaudi Arabia
  2. 2.Department of Physics, Faculty of ScienceAssiut UniversityAssiutEgypt
  3. 3.Department of Physics, Faculty of ScienceThe New Valley UniversityEl-KhargaEgypt

Personalised recommendations