Advertisement

Reddish orange phosphorescence of some types of zinc borosilicate glasses activated with Mn2+ and/or Sm3+

  • M. A. MarzoukEmail author
  • Rasha Mohamed Ali
  • Doaa Hamed Hussein
  • Hala Omar
Article
  • 25 Downloads

Abstract

The current research focuses on studying the photoluminescence and phosphorescence performance of some types of undoped zinc borosilicate glasses together with BaO or Bi2O3. The effects of addition transition metal oxide (MnO2) and/or rare—earth oxide (Sm2O3) on the behavior of mentioned characteristics were also studied. The glasses were prepared through the usual method of melt and annealing technique. X-ray diffraction (XRD) analysis proved the amorphous nature of the prepared glasses. The optical properties including the absorption in the UV–Visible NIR region and estimation of the optical band gap, Urbach energy, and refractive index have been studied. Both undoped zinc borosilicate and BaO glasses exhibit UV absorption and Bi2O3 doped glass exhibit an extended near—visible absorption. The characteristic absorption bands of MnO2—doped glasses in the visible region beside UV absorption were identified while the extended absorptions in the NIR region appeared for glasses containing Sm2O3. According to the progressive changes in the optical absorptions, variations in the optical parameters (Eopt, ∆E, n) were identified depending on the composition. The photoluminescence measurements revealed characteristic emissions of MnO2 and/or Sm2O3. The prepared glasses show good photoluminescence responses that gave the chance to estimated the phosphorescence performance of the prepared glasses. The phosphorescence measurements show different emissions related to reddish orange emission. The CIE chromaticity coordinates also indicated the appearance of a clear observable reddish orange color produced as a result of phosphorescence in the presence of MnO2 and/or Sm2O3 as a dopant in the glass matrix. The FTIR measurements represent the building structure of the studied glass network. Both tetrahedral BO4 and triangle BO3 beside SiO4 groups were shared as the basic building blocks of the glasses. Heavy metal ions Ba2+ and Bi3+ show characteristic changes in the FTIR absorption which reflect their effect on the building structure. The thermal properties of the prepared glasses have been identified by differential thermal analysis (DTA) and thermal expansion measurements. The thermal analysis was correlated to the change of heavy metal ion Ba2+ or Bi3+ in the glass network and indicating the crystallization conductance of the prepared glasses.

Notes

References

  1. 1.
    K. Riwotzki, M. Haase, Wet-chemical synthesis of doped colloidal nanoparticles: YVO4: Ln (Ln = Eu, Sm, Dy). Phys. Chem. B 102(50), 10129–10135 (1998)CrossRefGoogle Scholar
  2. 2.
    J. Kuang, Y. Liu, White-emitting long-lasting phosphor Sr2SiO4:Dy3+. Chem. Lett. 34, 598–599 (2005)CrossRefGoogle Scholar
  3. 3.
    H.C. Yang, C.Y. Li, H. He, Y. Tao, J.H. Xu, Q. Su, VUV–UV excited luminescent properties of LnCa4O(BO3)3:RE3+ (Ln = Y, La, Gd; Re = Eu, Tb, Dy, Ce). J. Lumin. 118, 61–69 (2006)CrossRefGoogle Scholar
  4. 4.
    C.R. Bamford, Colour Generation and Control in Glass, Glass Science & Technology, 2 (Elsevier Publishing Company, Amsterdam, 1977)Google Scholar
  5. 5.
    N.K. Mohan, M.R. Reddy, C.K. Jayasankar, N. Veeraiah, Spectroscopic and dielectric studies on MnO doped PbO–Nb2O5–P2O5 glass system. J. Alloys Compd. 458, 66–76 (2008)CrossRefGoogle Scholar
  6. 6.
    K. Bingham, S. Parke, Absorption and fluorescence spectra of divalence manganese in glasses. Phys. Chem. Glasses 6, 224 (1965)Google Scholar
  7. 7.
    S.P. Singh, R.P.S. Chakradhar, J.L. Rao, B. Karmakar, EPR, optical absorption and photoluminescence properties of MnO2 doped 23B2O3–5ZnO–72Bi2O3 glasses. Phys. B 405, 2157–2161 (2010)CrossRefGoogle Scholar
  8. 8.
    M.A. Marzouk, I.S. Ali, H.A. ElBatal, Optical, FT infrared and photoluminescence spectra of CeO2 – doped Na2O –ZnO – B2O3 host glass and effects of gamma irradiation. J. Non-Cryst. Solids 485, 14–23 (2018)CrossRefGoogle Scholar
  9. 9.
    D. Malacara, Color Vision and Colorimetry; Theory and Applications, 2nd edn. (SPIE press, Bellingham, 2011)CrossRefGoogle Scholar
  10. 10.
    R.J. Mortimer, T.S. Varley, Quantification of colour stimuli through the calculation of CIE chromaticity coordinates and luminance data for application to in situ colorimetry studies of electrochromic materials. Displays 32, 35–44 (2011)CrossRefGoogle Scholar
  11. 11.
    N.F. Mott, E.A. Davis, Electronic Processes in Non-Crystalline Materials, 2nd edn. (Clarendon press, Oxford, 1979)Google Scholar
  12. 12.
    F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92, 1324 (1953)CrossRefGoogle Scholar
  13. 13.
    V. Dimitrov, S. Sakka, Electronic oxide polarizability and optical basicity of simple oxides. I. J. Appl. Phys. 79, 1736–1740 (1996)CrossRefGoogle Scholar
  14. 14.
    A.M. Babu, B.C. Jamalaiah, T. Sasikala, S.A. Saleem, L.R. Moorthy, J. Alloys Compd. 509, 4743 (2011)CrossRefGoogle Scholar
  15. 15.
    J.E. Shelby, Introduction to Glass Science and Technology, 2nd edn. (The Royal Society of Chemistry, Cambridge, 2005)Google Scholar
  16. 16.
    S.P. Singh, R.P.S. Chakradhar, J.L. Rao, B. Karmakar, EPR, FTIR, optical absorption and photoluminescence studies of Fe2O3 and CeO2 doped ZnO–Bi2O3–B2O3 glasses. J. Alloys Compd. 493, 256–262 (2010)CrossRefGoogle Scholar
  17. 17.
    J.A. Duffy, Charge transfer spectra of metal ions in glass. Phys. Chem. Glasses 38, 289–292 (1997)Google Scholar
  18. 18.
    M.A. Marzouk, Y.M. Hamdy, H.A. Elbatal, Photoluminescence and spectral performance of manganese ions in zinc phosphate and barium phosphate host glasses. J. Non-Cryst. Solids 458, 1–14 (2017)CrossRefGoogle Scholar
  19. 19.
    G. Lakshminarayana, S. Buddhudu, Spectral analysis of Mn2+, Co2+ and Ni2+: B2O3–ZnO–PbO glasses. Spectrochim. Acta, Part A 63, 295–304 (2006)CrossRefGoogle Scholar
  20. 20.
    Paul C. DeRose, Melody V. Smith, Klaus D. Mielenz, Douglas H. Blackburn, Gary W. Kramer, Characterization of standard reference material 2940, Mn-ion-doped glass, spectral correction standard for fluorescence. J. Lumin. 129, 349–355 (2009)CrossRefGoogle Scholar
  21. 21.
    M.A. Marzouk, Y.M. Hamdy, H.A. ElBatal, F.M. EzzElDin, Photoluminescence and spectroscopic dependence of fluorophosphate glasses on samarium ions concentration and the induced defects by gamma irradiation. J. Lumin. 166, 295–303 (2015)CrossRefGoogle Scholar
  22. 22.
    M.A. Marzouk, Y.M. Hamdy, H.A. ElBatal, F.M. Ezz-ElDin, Study on the reducing effect of γ-irradiation on Sm3+ Doped LiAl fluorophosphate glasses through optical, structural and luminescence analysis. J. Mater. Sci. 29, 1399–1411 (2018)Google Scholar
  23. 23.
    P. Srivastava, S.B. Rai, D.K. Rai, Optical properties of Sm3+ doped calibo glass with addition of lead oxide. Spectrochim. Acta, Part A 60, 637–642 (2004)CrossRefGoogle Scholar
  24. 24.
    C.K. Jayasankar, E. Rukmini, Optical properties of Sm3+ ions in zinc borosulphate glasses. Opt. Mater. 8, 193–205 (1997)CrossRefGoogle Scholar
  25. 25.
    J. Lucas, M. Chanthanasinh, M. Poulain, M. Poulain, P. Brun, M.J. Weber, Preparation and optical properties of neodymium fluorozirconate glasses. J. Non-Cryst. Solids 27, 273–283 (1978)CrossRefGoogle Scholar
  26. 26.
    G.H. Dieke, Spectra and Energy Levels of Rare Earth Ions in Crystals (Wiley, New York, 1968)Google Scholar
  27. 27.
    Y. Ohishi, S. Takahashi, Low temperature optical absorption for Sm3+ and Eu3+ ions in ZrF4-based fluoride glass. J. Non-Cryst. Solids 74, 407–410 (1985)CrossRefGoogle Scholar
  28. 28.
    M.H. Wan, P.S. Wong, R. Hussin, H.O. Lintang, S. Endud, Structural and luminescence properties of Mn2+ ions doped calcium zinc borophosphate glasses. J. Alloys Compd. 595, 39–45 (2014)CrossRefGoogle Scholar
  29. 29.
    Z. Yingying, P. Ran, L. Chengyu, Z. Chunyu, S. Qiang, Reddish orange long lasting phosphorescence of Sm3+ in Sr2ZnSi2O7:Sm3+ phosphors. J. Rare Earths 28, 705–708 (2010)CrossRefGoogle Scholar
  30. 30.
    N. Ghoneim, M. Marzouk, T. Daoud, F. Ezzeldin, Spectroscopic properties of gamma irradiated TiO2 doped lithium phosphate glasses. Indian J. Phys. 87, 39–47 (2013)CrossRefGoogle Scholar
  31. 31.
    Y.M. Hamdy, M.A. Marzouk, H.A. ElBatal, Spectral properties and shielding behavior of gamma irradiated MoO3-doped silicophosphate glasses. Phys. B 429, 57–62 (2013)CrossRefGoogle Scholar
  32. 32.
    M. Marzouk, H. ElBatal, W. Eisa, Optical stability of 3d transition metal ions doped-cadmium borate glasses towards γ-rays interaction. Indian J. Phys. 90(7), 781–791 (2016)CrossRefGoogle Scholar
  33. 33.
    C.D. Huang, A.N. Cormack, The structure of sodium silicate glass. J. Chem. Phys. 93, 8180–8186 (1990)CrossRefGoogle Scholar
  34. 34.
    W. Vogel, Glass Chemistry, 2nd edn. (Springer, Berlin, 1994)CrossRefGoogle Scholar
  35. 35.
    J. Krogh-Moe, Interpretation of the infra-red spectra of boron oxide and alkali borate glasses. Phys. Chem. Glasses 6, 46–54 (1965)Google Scholar
  36. 36.
    E.I. Kamitsos, Infrared studies of borate glasses. Phys. Chem. Glasses 44, 79–87 (2003)Google Scholar
  37. 37.
    K. El-Egili, H. Doweidar, Y.M. Moustafa, I. Abbas, “Structure and some physical properties of PbO-P2O5 glasses. Phys. B 33(4), 237–245 (2003)CrossRefGoogle Scholar
  38. 38.
    R.D. Husung, R.H. Doremus, The infrared transmission spectra of four silicate glasses before and after exposure to water. J. Mater. Res. 5, 2209–2217 (1990)CrossRefGoogle Scholar
  39. 39.
    C.I. Merzbacher, W.B. White, The structure of alkaline earth aluminosilicate glasses as determined by vibrational spectroscopy. Non-Cryst. Solids 130, 18–34 (1991)CrossRefGoogle Scholar
  40. 40.
    F.H. ElBatal, M.A. Marzouk, H.A. ElBatal, Optical and crystallization studies of titanium dioxide doped sodium and potassium silicate glasses. J. Mol. Struct. 1121, 54–59 (2016)CrossRefGoogle Scholar
  41. 41.
    Y. Cheng, H. Xiao, W. Guo, W. Guo, “Structure and crystallization kinetics of PbO-B2O3 glasses. Ceram. Int. 33(7), 1341–1347 (2007)CrossRefGoogle Scholar
  42. 42.
    E.I. Kamitsos, A.P. Patsis, M.A. Karakassides, G.D. Chryssikos, “Infrared reflectance spectra of lithium borate glasses. J. Non-Cryst. Solids 126(1–2), 52–67 (1990)CrossRefGoogle Scholar
  43. 43.
    M.A. Marzouk, A.M. Abdel-Hameed, Crystallization and photoluminescent properties of Eu, Gd, Sm, Nd co-doped SrAl⁠2B⁠2O⁠7 nanocrystals phosphors prepared by glass-ceramic technique. J. Lumin. 205, 248–257 (2019)CrossRefGoogle Scholar
  44. 44.
    S.A.M. Abdel-Hameed, N. Ismail, H.F. Youssef, H.E.H. Sadek, M.A. Marzouk, Preparation and characterization of mica glass-ceramics as hydrogen storage materials. Int. J. Hydrog. Energy 42, 6829–6839 (2017)CrossRefGoogle Scholar
  45. 45.
    F.H. ElBatal, M.A. Marzouk, H.A. ElBatal, Crystallization and spectroscopic characterizations of binary SrO-B2O3, glasses doped with LiF, NaF, CaF2, or TiO2. J. Aust. Ceram. Soc. (2019).  https://doi.org/10.1007/s41779-019-00316-8 CrossRefGoogle Scholar
  46. 46.
    M.A. Marzouk, F.H. ElBatal, K.M. ElBadry, H.A. ElBatal, Optical, structural and thermal properties of sodium metaphosphate glasses containing Bi2O3 with interactions of gamma rays. Spectrochim. Acta, Part A 171, 454–460 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • M. A. Marzouk
    • 1
    Email author
  • Rasha Mohamed Ali
    • 2
  • Doaa Hamed Hussein
    • 2
  • Hala Omar
    • 2
  1. 1.Glass Research DepartmentNational Research CentreDokki, GizaEgypt
  2. 2.Glass Department, Faculty of Applied ArtsHelwan UniversityAd Doqi, GizaEgypt

Personalised recommendations