Microstructure and shear property of In-Sn-xAg solder joints fabricated by TLP bonding

  • Li YangEmail author
  • Yifeng Xiong
  • Yaocheng Zhang
  • Wei Jiang
  • Di Wei


Transient liquid phase (TLP) bonding was applied to prepare Cu/In-Sn-xAg/Cu (x = 20, 30, 40, 50, 60, 70 wt%) solder joints, and the effect of Ag particle content on joint microstructure, shear property and growth mechanism of intermetallic compound (IMC) was studied. The results indicated that the microstructure of solder joint consists of interfacial diffusion reaction zone and particle in situ reaction zone. The IMC in interfacial diffusion reaction zone is Cu3(In, Sn) phase and the IMCs in in situ reaction zone is composed of In-rich phase + Ag particle + ζ-Ag3In + Ag3(In, Sn). With the increasing Ag particle content, the thickness of IMC layer in diffusion reaction zone is decreased, the total amount of In-rich phase and Ag3(In, Sn) phase in in situ reaction zone is decreased, the quantity of Ag particles and ζ-Ag3In phase is grew. The AgIn2 phase is a stable IMC formed as a preferential reaction because it requires less Gibbs free energy than Sn-Ag phase, and it is transformed to ζ-Ag3In phase with increasing bonding time to 10 min. The void ratio of solder joints is decreased firstly and then increased with increasing Ag content. The shear strength of the joint is increased firstly and then decreased with increasing Ag particle content, and the maximum shear strength 22.2 MPa is obtained by Cu/In-Sn-50Ag/Cu solder joints. The shear fracture mechanism of solder joints is changed from ductile–brittle mixed fracture to brittle fracture.



This research was financially supported by the National Natural Science Foundation of China (Grant No. 51865006,) and Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 18KJA460001).


  1. 1.
    D.H. Jung, A. Sharm, J.P. Jung, J. Mater. Sci. 53, 47 (2017)CrossRefGoogle Scholar
  2. 2.
    S. Liu, S.B. Xue, P. Xue, D.X. Luo, J. Mater. Sci. 26, 4389 (2015)Google Scholar
  3. 3.
    Y. Du, C.T. Li, B. Huang, Solder Surf. Mt. Technol. 27, 7 (2015)CrossRefGoogle Scholar
  4. 4.
    H. Chen, IEEE Trans. Power Electron. 32, 441 (2016)CrossRefGoogle Scholar
  5. 5.
    G.O. Cook, D. Carl, Sorensen. J. Mater. Sci. 46, 5305 (2011)CrossRefGoogle Scholar
  6. 6.
    H. Shao, A. Wu, Y. Bao, Mater. Sci. Eng. A 680, 221 (2016)CrossRefGoogle Scholar
  7. 7.
    Y. Chingfeng, C. Hsienchie, C. Wenhwa, Rsc. Adv. 5, 70609 (2015)CrossRefGoogle Scholar
  8. 8.
    Y. Ma, H. Luo, W. Liu, X. Sheng, J. Mater. Sci. 27, 103 (2016)Google Scholar
  9. 9.
    V.L. Nguyen, S.H. Kim, J.W. Jeong, Electron. Mater. Lett. 13, 420 (2017)CrossRefGoogle Scholar
  10. 10.
    O. Mokhtari, H. Nishikawa, J. Electron. Mater. 13, 4158 (2014)CrossRefGoogle Scholar
  11. 11.
    M.L. Huang, Q. Zhou, N. Zhao, J. Mater. Sci. 24, 2624 (2013)Google Scholar
  12. 12.
    K. Kanlayasiri, K. Sukpimai, J. Alloys Compd. 25, 169 (2016)CrossRefGoogle Scholar
  13. 13.
    R.M. Shalaby, Cryst. Res. Technol. 45, 427 (2010)CrossRefGoogle Scholar
  14. 14.
    T. Satoh, T. Ishizaki, M. Usui, J. Mater Sci. 2, 1 (2018)Google Scholar
  15. 15.
    S. Tian, S. Li, J. Zhou, J Mater Sci. 28, 16120 (2017)Google Scholar
  16. 16.
    M.S. Yeh, Metall. Mater. Trans. A 3, 361 (2005)Google Scholar
  17. 17.
    J.B. Lee, H.Y. Hwang, M.W. Rhee, J. Electron. Mater. 44, 435 (2015)CrossRefGoogle Scholar
  18. 18.
    Y.M. Zhang, J.R.G. Evans, S. Yang, J. Cheminform. 44, 81 (2013)Google Scholar
  19. 19.
    R.I. Made, C.L. Gan, L.L. Yan, J. Electron. Mater. 38, 365 (2009)CrossRefGoogle Scholar
  20. 20.
    F.J. Wang, D.Y. Li, J.H. Wang, X.J. Wang, C.H. Dong, J. Mater. Sci. 28, 1631 (2017)Google Scholar
  21. 21.
    T. Shuang, L. Saipeng, Z. Jian, J. Mater. Sci. 28, 16120 (2017)Google Scholar
  22. 22.
    C.Y. Yu, J.G. Duh, J. Mater. Sci. 47, 6467 (2012)CrossRefGoogle Scholar
  23. 23.
    K.N. Tu, Y. Liu, Mater. Sci. Eng. R 136, 1 (2019)CrossRefGoogle Scholar
  24. 24.
    Y. Chingfeng, C. Hsienchie, C. Wenhwa, Rsc Adv. 5, 70609 (2015)CrossRefGoogle Scholar
  25. 25.
    H.K. Shao, A.P. Wu, Y.D. Bao, Trans. Nonferr. Metal Soc. China 27, 722 (2017)CrossRefGoogle Scholar
  26. 26.
    G.P. Vassilev, E.S. Dobrev, J.C. Tedenac, J Alloys Compd. 399, 118 (2005)CrossRefGoogle Scholar
  27. 27.
    T.M. Korhonen, J.K. Kivilahti, J. Electron. Mater. 27, 149 (1998)CrossRefGoogle Scholar
  28. 28.
    U.R. Kattner, W.J. Boettinger, J. Electron. Mater. 23, 603 (1994)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Li Yang
    • 1
    • 3
    Email author
  • Yifeng Xiong
    • 2
  • Yaocheng Zhang
    • 3
  • Wei Jiang
    • 2
  • Di Wei
    • 3
  1. 1.School of Mechanical EngineeringGuilin University of Aerospace TechnologyGuilinPeople’s Republic of China
  2. 2.School of Mechanical EngineeringSoochow UniversityJiangsuPeople’s Republic of China
  3. 3.School of Automatic EngineeringChangshu Institute of TechnologyJiangsuPeople’s Republic of China

Personalised recommendations