Advertisement

Boron improved electrochemical performance of LiNi0.8Co0.1Mn0.1O2 by enhancing the crystal growth with increased lattice ordering

  • Jian Dong
  • HuiHui He
  • Dongyun Zhang
  • Chengkang ChangEmail author
Article
  • 32 Downloads

Abstract

Boron-modified Li(Ni0.8Co0.1Mn0.1)1−xBxO2 cathode materials(NCM811) were successfully prepared by a nano-milling assisted solid-state approach. X-ray diffraction investigations showed that the materials are solid solutions with a layered structure. SEM observations implied that the doped B ions promoted the growth of the target crystal with well-developed facets since it will form liquid phase at lower temperature. The intensity ratio of I(003)/I(104) raised with the increase in Boron doping concentration, until a maximum value of 1.453 was observed at x = 0.01. Further Rietveld refinements revealed that boron ions occupy the crystal lattice in the transition metal slab which helps to promote the lattice ordering by decreasing the Li/Ni ionic mixing. Such B promoted NCM811 cathode materials were confirmed to have an improved diffusion coefficient with a reduced interfacial resistance by subsequent CV and EIS measurements. From the electrochemical test, those B modified NCM811 cathode materials presented enhanced electrochemical performance. Among the synthesized samples, Li(Ni0.8Co0.1Mn0.1)0.99B0.01O2 exhibited the best specific capacity, with 194.7 mAh g−1 and 166.8 mAh g−1 at 0.1C and 5C respectively. The capacity retention at 0.5C was also confirmed as 98.2% after 100 cycles. Such improvement can be explained by the reduced Li/Ni ionic mixing, the increased Li ionic diffusion and the reduced interfacial resistance caused by the promoted growth of the B doped NCM811 crystals. Compared to those NCM811 materials reported elsewhere, the material obtained by this approach showed high potential for future application.

Notes

Funding

The research was supported by Science and Technology Commission of Shanghai Municipality (14520503100 and 201310-JD-B2-009) and Shanghai Municipal Education Commission (15ZZ095).

References

  1. 1.
    N. Recham, J.N. Chotard, L. Dupont, C. Delacourt, W. Walker, M. Armand, J.M. Tarascon, Nat. Mater. (2009).  https://doi.org/10.1038/nmat2590 Google Scholar
  2. 2.
    Y.K. Sun, S.T. Myung, B.C. Park, J. Prakash, I. Belharouak, K. Amine, Nat. Mater. (2009).  https://doi.org/10.1038/nmat2418 Google Scholar
  3. 3.
    Y.K. Sun, Z. Chen, H.J. Noh, D.J. Lee, H.G. Jung, Y. Ren, S. Wang, C.S. Yoon, S.T. Myung, K. Amine, Nat. Mater. (2012).  https://doi.org/10.1038/nmat3435 Google Scholar
  4. 4.
    G. Derrien, J. Hassoun, S. Panero, B. Scrosati, Adv. Mater. (2007).  https://doi.org/10.1002/adma.200700748 Google Scholar
  5. 5.
    Z.M. Yu, L.C. Zhao, T. Nonferr, Metal. Soc. (2007).  https://doi.org/10.1016/S1003-6326(07)60152-6 Google Scholar
  6. 6.
    M.H. Kim, H.S. Shin, D. Shin, Y.K. Sun, J. Power Sources (2006).  https://doi.org/10.1016/j.jpowsour.2005.11.083 Google Scholar
  7. 7.
    S.M. Bak, E. Hu, Y. Zhou, X. Yu, S.D. Senanayake, S.J. Cho, K.B. Kim, K.Y. Chung, X.Q. Yang, K.W. Nam, ACS Appl. Mater. Interfaces. (2014).  https://doi.org/10.1021/am506712c Google Scholar
  8. 8.
    K. Min, K. Kim, C. Jung, S.W. Seo, Y.Y. Song, H.S. Lee, J. Shin, E. Cho, J. Power Sources (2016).  https://doi.org/10.1016/j.jpowsour.2016.03.017 Google Scholar
  9. 9.
    S. Gao, X. Zhan, Y.T. Cheng, J. Power Sources (2019).  https://doi.org/10.1016/j.jpowsour.2018.10.094 Google Scholar
  10. 10.
    Z. Huang, Z. Wang, X. Zheng, H. Guo, X. Li, Q. Jing, Z. Yang, RSC Adv. (2015).  https://doi.org/10.1039/c5ra16633k Google Scholar
  11. 11.
    L. Liu, K. Sun, N. Zhang, T. Yang, J. Solid State Electrochem. (2008).  https://doi.org/10.1007/s10008-008-0695-z Google Scholar
  12. 12.
    K. Min, S.W. Seo, Y.Y. Song, H.S. Lee, E. Cho, Phys. Chem. Chem. Phys. (2017).  https://doi.org/10.1039/c6cp06270a Google Scholar
  13. 13.
    S.W. Woo, S.T. Myung, H. Bang, D.W. Kim, Y.K. Sun, Electrochim. Acta (2009).  https://doi.org/10.1016/j.electacta.2009.01.048 Google Scholar
  14. 14.
    M. Eilers-Rethwisch, M. Winter, F.M. Schappacher, J. Power Sources (2018).  https://doi.org/10.1016/j.jpowsour.2018.02.080 Google Scholar
  15. 15.
    L.J. Li, X.H. Li, Z.X. Wang, H.J. Guo, P. Yue, W. Chen, L. Wu, J. Alloys Compd. (2010).  https://doi.org/10.1016/j.jallcom.2010.07.148 Google Scholar
  16. 16.
    R. Zhao, Z. Yang, J. Liang, D. Lu, C. Liang, X. Guan, A. Gao, H. Chen, J. Alloys Compd. (2016).  https://doi.org/10.1016/j.jallcom.2016.07.230 Google Scholar
  17. 17.
    Z. Huang, Z. Wang, Q. Jing, H. Guo, X. Li, Z. Yang, Electrochim. Acta (2016).  https://doi.org/10.1016/j.electacta.2016.01.139 Google Scholar
  18. 18.
    X. Li, K. Zhang, M. Wang, Y. Liu, M. Qu, W. Zhao, J. Zheng, Sustain Energy Fuels (2018).  https://doi.org/10.1039/c7se00513j Google Scholar
  19. 19.
    Q. Chen, C. Du, D. Qu, X. Zhang, Z. Tang, RSC Adv. (2015).  https://doi.org/10.1039/c5ra14376d Google Scholar
  20. 20.
    F. Schipper, M. Dixit, D. Kovacheva, M. Talianker, O. Haik, J. Grinblat, E.M. Erickson, C. Ghanty, D.T. Major, B. Markovsky, D. Aurbach, J. Mater. Chem. A (2016).  https://doi.org/10.1039/c6ta06740a Google Scholar
  21. 21.
    C. Qin, J. Cao, J. Chen, G. Dai, T. Wu, Y. Chen, Y. Tang, A. Li, Y. Chen, Dalton Trans. (2016).  https://doi.org/10.1039/c6dt01764a Google Scholar
  22. 22.
    L. Pan, Y. Xia, B. Qiu, H. Zhao, H. Guo, K. Jia, Q. Gu, Z. Liu, J. Power Sources (2016).  https://doi.org/10.1016/j.jpowsour.2016.07.064 Google Scholar
  23. 23.
    K. Saravanan, M.V. Reddy, P. Balaya, H. Gong, B.V.R. Chowdari, J.J. Vittal, J. Mater. Chem. (2009).  https://doi.org/10.1039/b817242k Google Scholar
  24. 24.
    G. Arnold, J. Garche, R. Hemmer, S. Ströbele, C. Vogler, M. Wohlfahrt-Mehrens, J. Power Sources (2003).  https://doi.org/10.1016/s0378-7753(03)00241-6 Google Scholar
  25. 25.
    R. Dominko, M. Bele, J.M. Goupil, M. Gaberscek, D. Hanzel, I. Arcon, J. Jamnik, Chem. Mater. (2007).  https://doi.org/10.1021/cm062843g Google Scholar
  26. 26.
    Y. Zhou, J. Wang, Y. Hu, R. O’Hayre, Z. Shao, Chem. Commun. (2010).  https://doi.org/10.1039/c0cc01721c Google Scholar
  27. 27.
    N. Recham, L. Dupont, M. Courty, K. Djellab, D. Larcher, M. Armand, J.M. Tarascon, Chem. Mater. (2009).  https://doi.org/10.1021/cm803259x Google Scholar
  28. 28.
    L. Guan, P. Xiao, T.J. Lv, D.Y. Zhang, C.K. Chang, J. Electrochem. Soc. (2017).  https://doi.org/10.1149/2.1731713jes Google Scholar
  29. 29.
    T.J. Lv, L. Guan, P. Xiao, D.Y. Zhang, C.K. Chang, J. Mater. Sci. (2019).  https://doi.org/10.1007/s10853-018-03194-w Google Scholar
  30. 30.
    T. Ohzuku, A. Ueda, M. Nagayama, Y. Iwakoshi, H. Komori, Electrochim. Acta (1993).  https://doi.org/10.1016/0013-4686(93)80046-3 Google Scholar
  31. 31.
    X.T. Yin, W.D. Zhou, J. Li, P. Lv, Q. Wang, D. Wang, F.Y. Wu, D. Dastan, H. Garmestani, Z. Shi, S. Ţălu, J. Mater. Sci. (2019).  https://doi.org/10.1007/s10854-019-01840-w Google Scholar
  32. 32.
  33. 33.
    D. Dastan, J. At. Mol. Condens. Nano Phys. 2, 109–119 (2015)Google Scholar
  34. 34.
    Z.L. Zhang, D.H. Chen, C.K. Chang, RSC Adv. (2017).  https://doi.org/10.1039/c7ra10053a Google Scholar
  35. 35.
    P. Xiao, T.J. Lv, X.P. Chen, C.K. Chang, Sci. Rep. (2017).  https://doi.org/10.1038/s41598-017-01657-9 Google Scholar
  36. 36.
    Y. Zhao, L. Peng, B. Liu, G. Yu, Nano Lett. (2014).  https://doi.org/10.1021/nl5008568 Google Scholar
  37. 37.
    M.D. Levi, J. Electrochem. Soc. (1999).  https://doi.org/10.1149/1.1391759 Google Scholar
  38. 38.
    X. Wu, S.H. Chang, Y.J. Park, K.S. Ryu, J. Power Sources (2004).  https://doi.org/10.1016/j.jpowsour.2004.05.043 Google Scholar
  39. 39.
    M. Zhang, H. Zhao, M. Tan, J. Liu, Y. Hu, S. Liu, X. Shu, H. Li, Q. Ran, J. Cai, X. Liu, J. Alloys Compd. (2019).  https://doi.org/10.1016/j.jallcom.2018.09.281 Google Scholar
  40. 40.
    M.X. Dong, X.Q. Li, Z.X. Wang, X.H. Li, H.J. Guo, Z.J. Huang, T. Nonferr, Metal. Soc. (2017).  https://doi.org/10.1016/S1003-6326(17)60132-8 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jian Dong
    • 1
  • HuiHui He
    • 1
  • Dongyun Zhang
    • 1
  • Chengkang Chang
    • 1
    • 2
    Email author
  1. 1.School of Materials Science and EngineeringShanghai Institute of TechnologyShanghaiChina
  2. 2.Shanghai Innovation Institute for MaterialsShanghai UniversityShanghaiChina

Personalised recommendations