Advertisement

Novel g-C3N4/TiO2 nanorods with enhanced photocatalytic activity for water treatment and H2 production

  • Haowei LinEmail author
  • Lei Zhao
Article
  • 18 Downloads

Abstract

The g-C3N4 was peeled off into nanosheets structure by ultrasonic, and then combined with TiO2 nanorods, the obtained composite was subjected to secondary high-temperature calcination to obtain a photocatalyst with smaller interfacial spacing, high photoelectron transfer rate and high photocatalytic performance. The structure was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Raman spectrometry, Fourier transform infrared (FTIR) spectroscopy. It was found that g-C3N4 in the form of nanosheets was uniformly attached to the surface of TiO2 nanorods. UV–Vis diffuse reflection spectra (UV–Vis) and Photoluminescence (PL) spectra were obtained to confirm that full coverage of the ultraviolet region to the visible region was achieved and the recombination of photogenerated electron–hole pairs was effectively inhibited. Degradation experiments and hydrogen evolution experiments showed that the composites photocatalytic properties were enhanced. The degradation rate of rhodamine B (RhB) at 35 min is achieved 98.5%, hydrogen production rate as high as 150 umol/g/h. The catalyst has very good photocatalytic stability. The research in this paper has an important impact on the photocatalytic preparation of hydrogen.

Notes

Acknowledgements

This work was supported by Science and Technology Key Project from Education Department of Henan Province (16A430003), Natural Science Project from Science and Technology Department of Henan Province (172102210231) and Science Foundation of Henan University of Technology (2014YWQN04, 2013JCYJ07, 2014BS007).

References

  1. 1.
    X. Wei, C. Shao, X. Li, N. Lu, K. Wang, Z. Zhang, Y. Liu, Nanoscale 8, 11034–11043 (2016)CrossRefGoogle Scholar
  2. 2.
    Y. Li, X. Feng, Z. Lu, H. Yin, F. Liu, Q. Xiang, J. Colloid Interface Sci. 513, 866–876 (2018)CrossRefGoogle Scholar
  3. 3.
    S. Sun, M. Sun, Y. Fang, Y. Wang, H. Wang, RSC Adv. 6, 13063–13701 (2016)CrossRefGoogle Scholar
  4. 4.
    L. Liang, L. Shi, F. Wang, L. Yao, Y. Zhang, Int. J. Hydrogen Energy 44, 1631–16326 (2019)Google Scholar
  5. 5.
    Z. Mo, H. Xu, X. She, Y. Song, P. Yan, J. Yi, X. Zhu, Y. Lei, S. Yuan, H. Li, Appl. Surf. Sci. 467, 151–157 (2019)CrossRefGoogle Scholar
  6. 6.
    N. Fajrina, M. Tahir, Appl. Surf. Sci. 471, 1053–1064 (2019)CrossRefGoogle Scholar
  7. 7.
    L. Shi, F. Wang, J. Sun, Mater. Res. Bull. 113, 115–121 (2019)CrossRefGoogle Scholar
  8. 8.
    H. Yan, H. Yang, J. Alloy. Compd. 509, 126–129 (2011)Google Scholar
  9. 9.
    L. Ling, L. Liu, Y. Feng, J. Zhu, Z. Bian, Chin. J. Catal. 39, 639–645 (2018)CrossRefGoogle Scholar
  10. 10.
    D. Monga, S. Basu, Adv. Powder Technol. (2019).  https://doi.org/10.1016/j.apt.2019.03.004 Google Scholar
  11. 11.
    H.D. Safajou, H. Khojasteh, M. Salavati-Niasari, J. Colloid Interface Sci. 498, 423–432 (2017)CrossRefGoogle Scholar
  12. 12.
    Z. Zhu, H. Pan, M. Murugananthan, J. Gong, Y. Zhang, Appl. Catal. B 232, 19–25 (2018)CrossRefGoogle Scholar
  13. 13.
    Z. Jiang, C. Zhu, W. Wan, K. Qian, J. Xie, J. Mater. Chem. A 4, 1806–1818 (2016)CrossRefGoogle Scholar
  14. 14.
    Y. Yang, Y. Li, J. Wang, Y. Zhang, D. He, J. Wu, H. Dai, RSC Adv. 5, 50833–50842 (2015)CrossRefGoogle Scholar
  15. 15.
    H. Gao, J. Jia, F. Guo, B. Li, D. Dai, X. Deng, X. Liu, C. Si, G. Liu, J. Photochem. Photobiol. A 364, 328–335 (2018)CrossRefGoogle Scholar
  16. 16.
    L. Al-Hajji, A. Ismail, M.F. Atitar, I. Abdelfattah, A.M. El-Ton, Ceram. Int. (2019).  https://doi.org/10.1016/j.ceramint.2018.10.009 Google Scholar
  17. 17.
    G. Zhang, T. Zhang, B. Li, S. Jiang, X. Zhang, L. Hai, X. Chen, W. Wu, Appl. Surf. Sci. 433, 963–974 (2018)CrossRefGoogle Scholar
  18. 18.
    Y. Xia, L. Xu, J. Peng, J. Han, S. Guo, L. Zhang, Z. Han, S. Komarneni, Ceram. Int. (2019).  https://doi.org/10.1016/j.ceramint.2019.06.118 Google Scholar
  19. 19.
    C. Liu, S.S. Dong, Y. Chen. Chem. Eng. J. (2019).  https://doi.org/10.1016/j.cej.2019.04.089 Google Scholar
  20. 20.
    P. Kumar, R. Boukherroub, K, Shankar. J. Mater. Chem. A 6, 12876–12931 (2018)CrossRefGoogle Scholar
  21. 21.
    H. Bashira, X. Yi, J. Yuan, K. Yin, S. Luo, J. Photochem. Photobiol. A 382, 111930 (2019)CrossRefGoogle Scholar
  22. 22.
    A. Rathi, H. Kmentová, A. Naldoni, A. Goswami, M.B. Gawande, R.S. Varma, Š. Kment, R. Zbořil 1, 2526–2535 (2019)Google Scholar
  23. 23.
    P. Kumar, U. Kumar Thakur, K. Alam, P. Kar, R. Kisslinger, S. Zeng, S. Patela, K. Shankar, Carbon 137, 174–187 (2018)CrossRefGoogle Scholar
  24. 24.
    S.P. Adhikari, G.P. Awasthi, J. Lee, C.H. Park, C.S. Kim, RSC Adv. 6, 55079–55091 (2016)CrossRefGoogle Scholar
  25. 25.
    J. Lei, B. Chen, W. Lv, L. Zhou, L. Wang, Y. Liu, J. Zhang, Dalton Trans. 48, 3486–3495 (2019)CrossRefGoogle Scholar
  26. 26.
    O. Elbanna, M. Fujitsuka, T. Majima, ACS Appl. Mater. Interfaces 9, 34844–34854 (2017)CrossRefGoogle Scholar
  27. 27.
    A. Tripathi, S. Narayanan, Environ. Nanotech. monitoring & management 10, 280–291 (2018)CrossRefGoogle Scholar
  28. 28.
    L. Ma, G. Wang, C. Jiang, H. Bao, Q. Xu, Appl. Surf. Sci. 430, 263–272 (2018)CrossRefGoogle Scholar
  29. 29.
    W. Gu, F. Lu, C. Wang, S. Kuga, L. Wu, Y. Huang, M. Wu, A.C.S. Appl, Mater. Interfaces 9, 28674–28684 (2017)CrossRefGoogle Scholar
  30. 30.
    C. Li, Z. Lou, Y. Wang, Y. Lu, Z. Ye, L. Zhu, Langmuir 35, 779–786 (2019)CrossRefGoogle Scholar
  31. 31.
    G. Li, Z. Lian, W. Wang, D. Zhang, H. Li, Nano Energy 19, 446–454 (2016)CrossRefGoogle Scholar
  32. 32.
    J. Song, X. Wang, J. Ma, X. Wang, J. Wang, S. Xia, J. Zhao, Chem. Eng. J. 348, 380–388 (2018)CrossRefGoogle Scholar
  33. 33.
    W. Tao, M. Wang, R. Ali, S. Nie, Q. Zeng, R. Yang, W.M. Lau, L. He, H. Tang, X. Jian, Appl. Surf. Sci. (2019).  https://doi.org/10.1016/j.apsusc.2019.07.177 Google Scholar
  34. 34.
    Z. Zhu, H. Pan, M. Murugananthan, J. Gong, Y. Zhang, Appl. Catal. B 232, 19–25 (2018)CrossRefGoogle Scholar
  35. 35.
    J. Wang, J. Huang, H. Xie, A. Qu, Int. J. Hydrogen Energy 39, 6354–6363 (2014)CrossRefGoogle Scholar
  36. 36.
    L. Chen, X. Zhou, B. Jin, J. Luo, X. Xu, L. Zhang, Y. Hong, Int. J. Hydrog. Energy. 41, 7292–7300 (2016)CrossRefGoogle Scholar
  37. 37.
    N.A. Guo, Y. Zeng, H. Li, X. Xu, H. Yu, X. Han, J. Hazard. Mater. 353, 80–88 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringHenan University of TechnologyZhengzhouPeople’s Republic of China
  2. 2.The First Affiliated Hospital of Zhengzhou UniversityZhengzhouPeople’s Republic of China

Personalised recommendations