Advertisement

The evolution of MoS2 properties under oxygen plasma treatment and its application in MoS2 based devices

  • Yadong Zhang
  • Jiangtao Liu
  • Yu Pan
  • Kun Luo
  • Jiahan Yu
  • Yongkui Zhang
  • Kunpeng Jia
  • Huaxiang Yin
  • Huilong Zhu
  • Hanmin Tian
  • Zhenhua WuEmail author
Article
  • 41 Downloads

Abstract

CVD molybdenum disulfide (MoS2) is shown to chemically oxidize rapidly after pure oxygen plasma bombardment. Atomic force microscopy (AFM), photoluminescence spectrum (PL), Raman spectrum and X-ray photoelectron spectroscopy (XPS) are employed to characterize the physical and chemical properties and indicate that MoO3 is easily formed from MoS2. The result of AFM shows that thickness of the film increases from 0.9 to 1.79 nm after oxygen plasma treatment, which is mainly due to the difference in lattice structure between pristine MoS2 and generated MoO3. XPS analysis shows that the intensity of the S2s peak is reduced to 0 after oxygen plasma treatment. Also, the intensities of Mo4+ peaks disappear at 233.2 eV and 230 eV, leaving only the Mo6+ peaks at 232.5 eV and 235.65 eV, which strongly proves the transformation of MoS2 to MoO3. Further, we use oxygen plasma to treat few-layer MoS2, and find that the top oxidized layer can protect the lower MoS2 from further oxidation. Finally, we obtain p-type doped transistors with this method.

Notes

Acknowledgements

This work was supported by the NSFC (Grant No. 61774168), the MOST of China (Grant No. 2016YFA0202300), NSFC (No. 11764008) and Technology Talent Support Project of Department of Education in Guizhou Province (No. KY [2018]045).

References

  1. 1.
    K.S. Novoselov et al., Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)CrossRefGoogle Scholar
  2. 2.
    R. Zhang et al., Aharonov-Bohm effect in monolayer phosphorene nanorings. Phys. Rev. B 95(12), 125418 (2017)CrossRefGoogle Scholar
  3. 3.
    M.H. Guimaraes et al., Atomically thin ohmic edge contacts between two-dimensional materials. ACS Nano 10(6), 6392–6399 (2016)CrossRefGoogle Scholar
  4. 4.
    M.Y. Li et al., How 2D semiconductors could extend Moore’s law. Nature 567(7747), 169–170 (2019)CrossRefGoogle Scholar
  5. 5.
    Z.Z. Zhang et al., Resonant tunneling through S- and U-shaped graphene nanoribbons. Nanotechnology 20(41), 415203 (2009)CrossRefGoogle Scholar
  6. 6.
    D.A. Cosma et al., Strain-induced modifications of transport in gated graphene nanoribbons. Phys. Rev. B 90(24), 245409 (2014)CrossRefGoogle Scholar
  7. 7.
    X.J. Li et al., Tuning the electrical and optical anisotropy of a monolayer black phosphorus magnetic superlattice. Nanotechnology 29(17), 174001 (2018)CrossRefGoogle Scholar
  8. 8.
    F. Schwierz, J. Pezoldt, R. Granzner, Two-dimensional materials and their prospects in transistor electronics. Nanoscale 7(18), 8261–8283 (2015)CrossRefGoogle Scholar
  9. 9.
    Z. Wu et al., Valley-dependent Brewster angles and Goos-Hanchen effect in strained graphene. Phys. Rev. Lett. 106(17), 176802 (2011)CrossRefGoogle Scholar
  10. 10.
    H. Liu, A.T. Neal, P.D. Ye, Channel length scaling of MoS2 MOSFETs. ACS Nano 6(10), 8563–8569 (2012)CrossRefGoogle Scholar
  11. 11.
    W. Zhu et al., Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition. Nat. Commun. 5, 3087 (2014)CrossRefGoogle Scholar
  12. 12.
    S. Das et al., High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 13(1), 100–105 (2013)CrossRefGoogle Scholar
  13. 13.
    H. Liu, P.D.D. Ye, MoS2 dual-gate MOSFET with atomic-layer-deposited Al2O3 as top-gate dielectric. IEEE Electron Device Lett. 33(4), 546–548 (2012)CrossRefGoogle Scholar
  14. 14.
    H. Wang et al., Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 12(9), 4674–4680 (2012)CrossRefGoogle Scholar
  15. 15.
    H. Liu et al., Fundamentals in MoS2 transistors: dielectric, scaling and metal contacts. Semicond. Dielectr. Metals Nanoelectron. 11 58(7), 203–208 (2013)Google Scholar
  16. 16.
    M. Chen et al., Stable few-layer MoS2 rectifying diodes formed by plasma-assisted doping. Appl. Phys. Lett. 103(14), 142110 (2013)CrossRefGoogle Scholar
  17. 17.
    Q. Yue et al., Functionalization of monolayer MoS2 by substitutional doping: a first-principles study. Phys. Lett. A 377(19–20), 1362–1367 (2013)CrossRefGoogle Scholar
  18. 18.
    S.X. Wu et al., High-performance p-type MoS2 field-effect transistor by toroidal-magnetic-field controlled oxygen plasma doping. 2D Materials (2019).  https://doi.org/10.1088/2053-1583/aafe2d Google Scholar
  19. 19.
    H. Zhu et al., Remote plasma oxidation and atomic layer etching of MoS2. ACS Appl. Mater. Interfaces 8(29), 19119–19126 (2016)CrossRefGoogle Scholar
  20. 20.
    S. Kim et al., Effects of plasma treatment on surface properties of ultrathin layered MoS2. 2D Materials 3(3), 035002 (2016)CrossRefGoogle Scholar
  21. 21.
    N. Kang et al., Photoluminescence quenching in single-layer MoS2 via oxygen plasma treatment. J. Phys. Chem. C 118(36), 21258–21263 (2014)CrossRefGoogle Scholar
  22. 22.
    M.R. Islam et al., Tuning the electrical property via defect engineering of single layer MoS2 by oxygen plasma. Nanoscale 6(17), 10033–10039 (2014)CrossRefGoogle Scholar
  23. 23.
    X.L. Li, Y.D. Li, Formation of MoS2 inorganic fullerenes (IFs) by the reaction of MoO3 nanobelts and S. Chemistry 9(12), 2726–2731 (2003)CrossRefGoogle Scholar
  24. 24.
    R.F. Frindt, Single crystals of MoS2 several molecular layers thick. J. Appl. Phys. 37(4), 1928–1929 (1966)CrossRefGoogle Scholar
  25. 25.
    Y. Liu et al., Layer-by-layer thinning of MoS2 by plasma. ACS Nano 7(5), 4202–4209 (2013)CrossRefGoogle Scholar
  26. 26.
    A. Splendiani et al., Emerging photoluminescence in monolayer MoS2. Nano Lett. 10(4), 1271–1275 (2010)CrossRefGoogle Scholar
  27. 27.
    X.H. Chen et al., Synthesis and characterization of hexagonal and truncated hexagonal shaped MoO3 nanoplates. J. Phys. Chem. C 113(52), 21582–21585 (2009)CrossRefGoogle Scholar
  28. 28.
    Y. Du et al., Iso-oriented monolayer alpha-MoO3(010) films epitaxially grown on SrTiO3(001). Nanoscale 8(5), 3119–3124 (2016)CrossRefGoogle Scholar
  29. 29.
    M. Dieterle, G. Weinberg, G. Mestl, Raman spectroscopy of molybdenum oxides. Part I. Structural characterization of oxygen defects in MoO3−x by DR UV/VIS, Raman spectroscopy and X-ray diffraction. Phys. Chem. Chem. Phys. 4(5), 812–821 (2002)CrossRefGoogle Scholar
  30. 30.
    J. Yang et al., Improved growth behavior of atomic-layer-deposited high-k dielectrics on multilayer MoS2 by oxygen plasma pretreatment. ACS Appl. Mater. Interfaces 5(11), 4739–4744 (2013)CrossRefGoogle Scholar
  31. 31.
    P.A. Spevack, N.S. Mcintyre, A Raman and XPS investigation of supported molybdenum oxide thin-films. 1. Calcination and reduction studies. J. Phys. Chem. 97(42), 11020–11030 (1993)CrossRefGoogle Scholar
  32. 32.
    M. Chen et al., Effects of MoS2 thickness and air humidity on transport characteristics of plasma-doped MoS2 field-effect transistors. J. Vac. Sci. Technol. B 32(6), 06FF02 (2014)CrossRefGoogle Scholar
  33. 33.
    A. Bahari, M. Ghovati, A. Hashemi, Studying of SiO2/capron nanocomposite as a gate dielectric film for improved threshold voltage. Appl. Phys. A 125(4), 257 (2019)CrossRefGoogle Scholar
  34. 34.
    A. Hashemi, A. Bahari, Synthesis and characterization of silanized-SiO2/povidone nanocomposite as a gate insulator: the influence of Si semiconductor film type on the interface traps by deconvolution of Si2s. Curr. Appl. Phys. 18(12), 1546–1552 (2018)CrossRefGoogle Scholar
  35. 35.
    A. Hashemi, A. Bahari, S. Ghasemi, Synthesis and characterization of cross-linked nanocomposite as a gate dielectric for p-type silicon field-effect transistor. J. Electron. Mater. 47(7), 3717–3726 (2018)CrossRefGoogle Scholar
  36. 36.
    B.C. Windom, W.G. Sawyer, D.W. Hahn, A Raman spectroscopic study of MoS2 and MoO3: applications to tribological systems. Tribol. Lett. 42(3), 301–310 (2011)CrossRefGoogle Scholar
  37. 37.
    W. Pan et al., Biaxial compressive strain engineering in graphene/boron nitride heterostructures. Sci. Rep. 2, 893 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yadong Zhang
    • 1
    • 2
  • Jiangtao Liu
    • 3
  • Yu Pan
    • 1
  • Kun Luo
    • 1
  • Jiahan Yu
    • 1
  • Yongkui Zhang
    • 1
  • Kunpeng Jia
    • 1
  • Huaxiang Yin
    • 1
    • 4
  • Huilong Zhu
    • 1
    • 4
  • Hanmin Tian
    • 2
  • Zhenhua Wu
    • 1
    • 4
    Email author
  1. 1.Key Laboratory of Microelectronics Device & Integrated TechnologyInstitute of Microelectronics, Chinese Academy of SciencesBeijingChina
  2. 2.Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information EngineeringHebei University of TechnologyTianjinChina
  3. 3.College of Mechanical and Electrical EngineeringGuizhou Minzu UniversityGuiyangChina
  4. 4.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations