Advertisement

Realization of color-tunable emission via energy transfer in novel single-phase K3YB6O12:Bi3+, Eu3+ phosphors

  • Bing HanEmail author
  • Beibei Liu
  • Jie Zhang
  • Yazhou Dai
  • Hengzhen ShiEmail author
Article
  • 17 Downloads

Abstract

Nowadays, Bi3+→Eu3+ energy transfer behavior is a hot research topic in phosphor-converted white light emitting diodes, because it can simultaneously realize the efficient sensitization of red emission of Eu3+ and emission color adjusting. Herein, we report a series of novel Bi3+ singly doped and Bi3+/Eu3+ co-doped K3YB6O12 phosphor materials synthesized by conventional high-temperature solid-state reaction. The structural and photoluminescence properties of the as-prepared phosphors were investigated by X-ray diffraction, photoluminescence spectra and decay curves. K3YB6O12:Bi3+ phosphors exhibited a single ultraviolet-blue emission band excited by ultraviolet that corresponded to the characteristic 3P1 → 1S0 transition of Bi3+ ions and reached the highest emission intensity with the Bi3+ doping concentration of 15%. By introducing Eu3+ into K3YB6O12:0.015Bi3+ phosphor, the Bi3+ → Eu3+ energy transfer phenomenon was induced in the K3YB6O12:Bi3+, Eu3+ phosphors that resulted in broad excitation characteristic in ultraviolet region. With the Eu3+ contents increase, the Bi3+ → Eu3+ energy transfer becomes more and more efficient that leads to the color-tunable emission from ultraviolet-blue to red. In addition, the efficiency and mechanism of Bi3+ → Eu3+ energy transfer were also investigated in detail, as based on theoretical evaluations. Our results implied that the as-prepared K3YB6O12:Bi3+, Eu3+ phosphors could be suitable to be applied in white light emitting diodes.

Notes

Acknowledgements

The work is financially supported by the National Natural Science Foundation of China (No. 21501153) and the Training Program for Young Backbone Teacher in University of He’nan Province (No. 2017GGJS092).

References

  1. 1.
    K. Omri, O.M. Lemine, L. El Mir, Mn doped zinc silicate nanophosphor with bifunctionality of green-yellow emission and magnetic properties. Ceram. Int. 43, 6585–6591 (2017)CrossRefGoogle Scholar
  2. 2.
    K. Omri, A. Alyamani, L. El Mir, Photoluminescence and cathodoluminescence of Mn doped zinc silicate nanophosphors for green and yellow field emissions displays. Appl. Phys. A 124, 215 (2018)CrossRefGoogle Scholar
  3. 3.
    N. Alonizan, S. Rabaoui, K. Omri, Rabia Qindeel, Microstructure and luminescence properties of ZnO: Mn nano-particles and ZnO:Mn/TiO2 nano-composite synthesized by a two-step chemical method. Appl. Phys. A 124, 710 (2018)CrossRefGoogle Scholar
  4. 4.
    P.P. Dang, S.S. Liang, G.G. Li, Y. Wei, Z.Y. Cheng, H.Z. Lian, M.M. Shang, S.J. Ho, J. Lin, Controllable optical tuning and improvement in Li+ , Eu3+ -codoped BaSc2O4:Bi3+ based on energy transfer and charge compensation. J. Mater. Chem. C 6, 6449–6459 (2018)CrossRefGoogle Scholar
  5. 5.
    W. Xie, Y.W. Mo, C.W. Zou, F.W. Kang, G.H. Sun, Broad color tuning and Eu3+ -related photoemission enhancement via controllable energy transfer in the La2MgGeO6:Eu3+ , Bi3+ phosphor. Inorg. Chem. Front. 5, 1076–1084 (2018)CrossRefGoogle Scholar
  6. 6.
    R.F. Wei, L.J. Wang, F.F. Hu, X.M. Li, X.S. Peng, Y.F. Shi, H. Guo, J.R. Qiu, Tunable emission and energy transfer in single-phased Ba9Lu2Si6O24:Bi3+ , Eu3+ for UV W-LEDs. J. Lumin. 197, 291–296 (2018)CrossRefGoogle Scholar
  7. 7.
    H. Wang, X.Y. Chen, L.M. Teng, D.K. Xu, W.P. Chen, R.F. Wei, F.F. Hu, X.Y. Sun, H. Guo, Adjustable emission and energy transfer process in BaGd2O4:Bi3+ , Eu3+ phosphors. J. Lumin. 206, 185–191 (2019)CrossRefGoogle Scholar
  8. 8.
    P.P. Dang, S.S. Liang, G.G. Li, H.Z. Lian, M.M. Shang, J. Lin, Broad color tuning of Bi3+/Eu3+ -doped (Ba, Sr)3Sc4O9 solid solution compounds via crystal field modulation and energy transfer. J. Mater. Chem. C 6, 9990–9999 (2018)CrossRefGoogle Scholar
  9. 9.
    X. Li, P.L. Li, Z.J. Wang, S.M. Liu, Q. Bao, X.Y. Meng, K.L. Qiu, Y.B. Li, Z.Q. Li, Z.P. Yang, Color-tunable luminescence properties of Bi3+ in Ca5(BO3)3F via changing site occupation and energy transfer. Chem. Mater. 29, 8792–8803 (2017)CrossRefGoogle Scholar
  10. 10.
    W. Chen, Z.C. Liu, L.L. Shen, C.Y. Shen, L. Ding, Z.L. Zhang, H.L. Zhang, W.D. Xiang, X.J. Liang, Design and energy transfer mechanism for single phased Gd2MgTiO6:Bi3+, Eu3+ tunable white light emitting phosphors. J. Mater. Sci. 54, 4056–4072 (2019)CrossRefGoogle Scholar
  11. 11.
    P.P. Dang, S.S. Liang, G.G. Li, Y. Wei, Z.Y. Cheng, H.Z. Lian, M.M. Shang, A.A. AlKheraif, J. Lin, Full color luminescence tuning in Bi3+/Eu3+-doped LiCa3MgV3O12 garnet phosphors based on local lattice distortion and multiple energy transfers. Inorg. Chem. 57, 9251–9259 (2018)CrossRefGoogle Scholar
  12. 12.
    S.G. Zhao, G.C. Zhang, J.Y. Yao, Y.C. Wu, K3YB6O12: a new nonlinear optical crystal with a short UV cutoff edge. Mater. Res. Bull. 47, 3810–3813 (2012)CrossRefGoogle Scholar
  13. 13.
    L. Yang, Y.P. Wan, Y.L. Huang, C.L. Chen, H.J. Seo, Development of YK3B6O12:RE (RE = Eu3+, Tb3+, Ce3+) tricolor phosphors under near-UV light excitation. J. Alloys Compd. 684, 40–46 (2016)CrossRefGoogle Scholar
  14. 14.
    L. Yang, Y.P. Wan, H.G. Weng, Y.L. Huang, C.L. Chen, H.J. Seo, Luminescence and color center distributions in K3YB6O12:Ce3+ phosphor. J. Phys. D 49, 325303 (2016)CrossRefGoogle Scholar
  15. 15.
    B. Han, B.B. Liu, J.P. Du, Y.Z. Dai, J. Zhang, H.Z. Shi, K3YB6O12:Ce3+ , Tb3+ : A near-ultraviolet-excitable emission-tunable phosphor for white light-emitting diodes. Opt. Laser Tech. 113, 211–216 (2019)CrossRefGoogle Scholar
  16. 16.
    R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 32, 751–767 (1976)CrossRefGoogle Scholar
  17. 17.
    J. Han, F.J. Pan, M.S. Molokeev, J.F. Dai, M.Y. Peng, W.J. Zhou, J. Wang, Redefinition of crystal structure and Bi3+ yellow luminescence with strong near-ultraviolet excitation in La3BWO9:Bi3+ phosphor for white light-emitting diodes. ACS Appl. Mater. Interfaces. 10, 13660–13668 (2018)CrossRefGoogle Scholar
  18. 18.
    H.M. Li, R. Pang, G.Y. Liu, W.Z. Sun, D. Li, L.H. Jiang, S. Zhang, C.Y. Li, J. Feng, H.J. Zhang, Synthesis and luminescence properties of Bi3+-activated K2MgGeO4: A promising high-brightness orange-emitting phosphor for WLEDs conversion. Inorg. Chem. 57, 12303–12311 (2018)CrossRefGoogle Scholar
  19. 19.
    D.Y. Wang, Z.B. Tang, W. Khan, Y.H. Wan, Photoluminescence study of a broad yellow-emitting phosphor K2ZrSi2O7:Bi3+. Chem. Eng. J. 313, 1082–1087 (2017)CrossRefGoogle Scholar
  20. 20.
    M.M. Shang, S.S. Liang, N.R. Qu, H.Z. Lian, J. Lin, Influence of anion/cation substitution (Sr2+→Ba2+, Al3+→Si4+, N3−→O2−) on phase transformation and luminescence properties of Ba3Si6O15:Eu2+ phosphors. Chem. Mater. 29, 1813–1829 (2017)CrossRefGoogle Scholar
  21. 21.
    G. Blasse, Energy transfer in oxidic phosphors. Philips Res. Rep. 24, 131–144 (1969)Google Scholar
  22. 22.
    Y. Zhang, X.J. Zhang, L.L. Zheng, Y. Zeng, Y. Lin, Y.L. Liu, B.F. Lei, H.R. Zhang, Energy transfer and tunable emission of Ca14Al10Zn6O35:Bi3+ , Sm3+ phosphor. Mater. Res. Bull. 100, 56–61 (2018)CrossRefGoogle Scholar
  23. 23.
    L. Wang, J.W. Qiao, Y.F. Liu, P. Huang, Q.F. Shi, Y. Tian, C.E. Cui, Z.H. Luo, Tunable luminescence of the full-color-emitting LiGd5P2O13:Bi3+ , Eu3+ phosphor based on energy transfers. Opt. Mater. 67, 78–83 (2017)CrossRefGoogle Scholar
  24. 24.
    P. Boutinaud, Revisiting the spectroscopy of the Bi3+ ion in oxide compounds. Inorg. Chem. 52, 6028–6038 (2013)CrossRefGoogle Scholar
  25. 25.
    P. Boutinaud, E. Cavalli, Predicting metal-to-metal charge transfer in closed-shell transition metal oxides doped with Bi3+ or Pb2+. Chem. Phys. Lett. 503, 239–243 (2011)CrossRefGoogle Scholar
  26. 26.
    X.M. Liu, J. Lin, Enhanced luminescence of gadolinium niobates by Bi3+ doping for field emission displays. J. Lumin. 122–123, 700–703 (2007)CrossRefGoogle Scholar
  27. 27.
    T.P. Xie, L. Zhang, Y. Guo, X.X. Wang, Y.J. Wang, Tuning of Bi3+-related excitation and emission positions through crystal field modulation in the perovskite-structured La2(Znx, Mg1−x)TiO6 (0 ≤ x≤1):Bi3+ solid solution for white LEDs. Ceram. Int. 45(3), 3502–3509 (2019)CrossRefGoogle Scholar
  28. 28.
    H.P. Ji, Z.H. Huang, Z.G. Xia, M.S. Molokeev, X.X. Jiang, Z.S. Lin, V.V. Atuchin, Comparative investigations of the crystal structure and photoluminescence property of eulytite-type Ba3Eu(PO4)3 and Sr3Eu(PO4)3. Dalton Trans. 44, 7679–7686 (2015)CrossRefGoogle Scholar
  29. 29.
    V.V. Atuchin, A.K. Subanakov, A.S. Aleksandrovsky, B.G. Bazarov, J.G. Bazarova, T.A. Gavrilova, A.S. Krylov, M.S. Molokeev, A.S. Oreshonkov, SYu. Stefanovich, Structural and spectroscopic properties of new noncentrosymmetric self-activated borate Rb3EuB6O12 with B5O10 units. Mater. Des. 140, 480–494 (2018)CrossRefGoogle Scholar
  30. 30.
    V.V. Atuchin, A.S. Aleksandrovsky, B.G. Bazarov, J.G. Bazarova, O.D. Chimitova, Y.G. Denisenko, T.A. Gavrilova, A.S. Krylov, E.A. Maximovskiy, M.S. Molokeev, A.S. Oreshonkov, A.M. Pugachev, N.V. Surovtsev, Exploration of structural, vibrational and spectroscopic properties of self-activated orthorhombic double molybdate RbEu(MoO4)2 with isolated MoO4 units. J. Alloys Compd. 785, 692–697 (2019)CrossRefGoogle Scholar
  31. 31.
    A.J. Huang, Z.W. Yang, C.Y. Yu, Z.Z. Chai, J.B. Qiu, Z.G. Song, Tunable and white light emission of a single-phased Ba2Y(BO3)2Cl:Bi3+ , Eu3+ phosphor by energy transfer for ultraviolet converted white LEDs. J. Phys. Chem. C 121, 5267–5276 (2017)CrossRefGoogle Scholar
  32. 32.
    Z. Zhou, Y. Zhong, M. Xia, N. Zhou, B.F. Lei, J. Wang, F.F. Wu, Tunable dual emission of Ca3Al4ZnO10:Bi3+ , Mn4+ via energy transfer for indoor plant growth lighting. J. Mater. Chem. C 6, 8914–8922 (2018)CrossRefGoogle Scholar
  33. 33.
    R. Wangkhem, T. Yaba, N. ShantaSingh, R.S. Ningthoujam, Red emission enhancement from CaMoO4:Eu3+ by co-doping of Bi3+ for near UV/blue LED pumped white pcLEDs: Energy transfer studies. J. Appl. Phys. 123, 124303 (2018)CrossRefGoogle Scholar
  34. 34.
    W. Xie, H.X. Huang, J.X. Li, Z.S. Wang, C.X. Tian, M.B. Xie, C.W. Zou, G.H. Sun, Controlling the energy transfer via multi luminescent centers to achieve white/tunable light in a single-phased Sc2O3:Bi3+ , Eu3+ phosphor. Ceram. Int. 44, 9823–9829 (2018)CrossRefGoogle Scholar
  35. 35.
    L. Li, Y.X. Pan, Y. Huang, S.M. Huang, M.M. Wu, Dual-emissions with energy transfer from the phosphor Ca14Al10Zn6O35:Bi3+ , Eu3+ for application in agricultural lighting. J. Alloys Compd. 724, 735–743 (2017)CrossRefGoogle Scholar
  36. 36.
    W.H. Song, X.Y. Chen, L.M. Teng, Z.G. Zheng, J. Wen, F.F. Hu, R.F. Wei, L.P. Chen, H. Guo, Energy transfer and color-tunable emission in Ba2Y2Si4O13:Bi3+ , Eu3+ phosphors. J. Am. Ceram. Soc. 102, 1822–1831 (2019)Google Scholar
  37. 37.
    R.F. Wei, Z.G. Zheng, Y.F. Shi, X.S. Peng, H. Wang, X.L. Tian, F.F. Hu, H. Guo, Tunable emission with excellent thermal stability in single-phased SrY2O4:Bi3+ , Eu3+ phosphors for UV-LEDs. J. Alloys Compd. 767, 403–408 (2018)CrossRefGoogle Scholar
  38. 38.
    S.A. Zhang, H.M. Luo, Z.F. Mu, J.M. Li, S.X. Guo, Z.Z. Li, Q. Wang, F.G. Wu, Photoluminescence and tunable emissions of La2(GeO4)O:Bi3+, Eu3+ phosphor for ultraviolet converted light emitting diodes. J. Alloys Compd. 757, 423–433 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Material and Chemical EngineeringZhengzhou University of Light IndustryZhengzhouPeople’s Republic of China

Personalised recommendations