Advertisement

Palygorskite/g-C3N4 conjunction for visible-light-driven degradation of tetracycline hydrochloride

  • Lina Wang
  • Changxin Yan
  • Qizhao WangEmail author
Article
  • 8 Downloads

Abstract

In this paper, a simple impregnation calcination method was employed to fabricate a productive photocatalyst by introducing g-C3N4 onto the palygorskite (pal). The structure and morphology of the as-prepared pal/g-C3N4 composites were analyzed by X-ray diffractometer, scanning electron microscopy, N2 absorption–desorption isotherm (BET) and Fourier transform infrared spectroscopy. Their optical properties were confirmed by using UV–Vis diffuse reflectance spectroscopy and photoluminescence (PL). The photocatalytic performances of pal/g-C3N4 samples were evaluated through degradation of tetracycline hydrochloride under visible light irradiation. Due to the improvement in the absorption of tetracycline hydrochloride provided by the incorporated pal, 8 wt% calcined pal/g-C3N4 showed superior photocatalytic efficiency, i.e., 85% removal of the contaminant within 100 min, which is higher than either pure g-C3N4 or pal. Still, the possible photocatalytic mechanism was also postulated.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21663027) and the Fundamental Research Funds for the Central Universities of Chang’an University (300102299304).

References

  1. 1.
    G. Tan, L. Zhang, H. Ren, J. Huang, W. Yang, A. Xia, Ceram. Int. 40(7, Part A), 9541–9547 (2014)CrossRefGoogle Scholar
  2. 2.
    J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Chem. Rev. 114, 9919–9986 (2014)CrossRefGoogle Scholar
  3. 3.
    L.-W. Shan, L.-Q. He, J. Suriyaprakash, L.-X. Yang, J. Alloy. Compd. 665, 158–164 (2016)CrossRefGoogle Scholar
  4. 4.
    M. Faisal, A.A. Ibrahim, H. Bouzid, S.A. Al-Sayari, M.S. Al-Assiri, A.A. Ismail, J. Mol. Catal. A 387, 69–75 (2014)CrossRefGoogle Scholar
  5. 5.
    L.-W. Shan, G.-L. Wang, L.-Z. Liu, Z. Wu, J. Mol. Catal. A 406, 145–151 (2015)CrossRefGoogle Scholar
  6. 6.
    J.B. Fei, Y. Cui, X.H. Yan, W. Qi, Y. Yang, K.W. Wang, Q. He, J.B. Li, Adv. Mater. 20, 452–456 (2008)CrossRefGoogle Scholar
  7. 7.
    Y. Zhang, H. Fan, M. Li, H. Tian, Dalton Trans. 42, 13172–13178 (2013)CrossRefGoogle Scholar
  8. 8.
    T.R. Gordon, M. Cargnello, T. Paik, F. Mangolini, R.T. Weber, P. Fornasiero, C.B. Murray, J. Am. Chem. Soc. 134, 6751–6761 (2012)CrossRefGoogle Scholar
  9. 9.
    H. Zhang, G. Chen, D.W. Bahnemann, J. Mater. Chem. 19, 5089–5121 (2009)CrossRefGoogle Scholar
  10. 10.
    S. Zhou, P. Yue, J. Huang, L. Wang, H. She, Q. Wang, Chem. Eng. J. 371, 885–892 (2019)CrossRefGoogle Scholar
  11. 11.
    M. Bellardita, M. Addamo, A. Di Paola, G. Marcì, L. Palmisano, L. Cassar, M. Borsa, J. Hazard. Mater. 174, 707–713 (2010)CrossRefGoogle Scholar
  12. 12.
    J.B. Zhong, Y. Lu, W.D. Jiang, Q.M. Meng, X.Y. He, J.Z. Li, Y.Q. Chen, J. Hazard. Mater. 168, 1632–1635 (2009)CrossRefGoogle Scholar
  13. 13.
    Q. Zhao, Y. Xie, Z. Zhang, X. Bai, Cryst. Growth Des. 7, 153–158 (2007)CrossRefGoogle Scholar
  14. 14.
    K. Wu, H. Zhu, Z. Liu, W. Rodríguez-Córdoba, T. Lian, J. Am. Chem. Soc. 134, 10337–10340 (2012)CrossRefGoogle Scholar
  15. 15.
    P. Wang, B. Huang, X. Zhang, X. Qin, H. Jin, Y. Dai, Z. Wang, J. Wei, J. Zhan, S. Wang, J. Wang, M.-H. Whangbo, Chem. Eur. 15, 1821–1824 (2009)CrossRefGoogle Scholar
  16. 16.
    Z. Yi, J. Ye, N. Kikugawa, T. Kako, S. Ouyang, H. Stuart-Williams, H. Yang, J. Cao, W. Luo, Z. Li, Y. Liu, R.L. Withers, Nat. Mater. 9, 559 (2010)CrossRefGoogle Scholar
  17. 17.
    I. Tsuji, A. Kudo, J. Photochem. Photobiol., A 156, 249–252 (2003)CrossRefGoogle Scholar
  18. 18.
    V. Homem, L. Santos, J. Environ. Manag. 92, 2304–2347 (2011)CrossRefGoogle Scholar
  19. 19.
    G. Zhu, S. Li, J. Gao, F. Zhang, C. Liu, Q. Wang, M. Hojamberdiev, Appl. Surf. Sci. 493, 913–925 (2019)CrossRefGoogle Scholar
  20. 20.
    K.M. Alam, P. Kumar, P. Kar, U.K. Thakur, S. Zeng, K. Cui, K. Shankar, Nanoscale 1(4), 1460–1471 (2019)CrossRefGoogle Scholar
  21. 21.
    P. Kumar, R. Boukherroub, K. Shankar, J. Mater. Chem. A. 6(27), 12876–12931 (2018)CrossRefGoogle Scholar
  22. 22.
    X. Yu, L. Huang, Y. Wei, J. Zhang, Z. Zhao, W. Dai, B. Yao, Mater. Res. Bull. 64, 410–417 (2015)CrossRefGoogle Scholar
  23. 23.
    H. She, Y. Sun, S. Li, J. Huang, L. Wang, G. Zhu, Q. Wang, Appl. Catal. B 245, 439–447 (2019)CrossRefGoogle Scholar
  24. 24.
    H. She, H. Zhou, L. Li, Z. Zhao, M. Jiang, J. Huang, L. Wang, Q. Wang, A.C.S. Sustain, Chem. Eng. 7, 650–659 (2019)Google Scholar
  25. 25.
    H. She, Y. Wang, H. Zhou, Y. Li, L. Wang, J. Huang, Q. Wang, ChemCatChem 11, 753–759 (2019)CrossRefGoogle Scholar
  26. 26.
    L. Wang, S. Duan, P. Jin, H. She, J. Huang, Z. Lei, T. Zhang, Q. Wang, Appl. Catal. B 239, 599–608 (2018)CrossRefGoogle Scholar
  27. 27.
    Q. Wang, T. Niu, L. Wang, C. Yan, J. Huang, J. He, H. She, B. Su, Y. Bi, Chem. Eng. J. 337, 506–514 (2018)CrossRefGoogle Scholar
  28. 28.
    G. Zhu, M. Hojamberdiev, S. Zhang, S.T.U. Din, W. Yang, Appl. Surf. Sci. 467–468, 968–978 (2019)CrossRefGoogle Scholar
  29. 29.
    M. Muruganandham, Y. Kusumoto, J. Phys. Chem. C 113, 16144–16150 (2009)CrossRefGoogle Scholar
  30. 30.
    Y. Liu, J. Hu, T. Zhou, R. Che, J. Li, J. Mater. Chem. 21, 16621–16627 (2011)CrossRefGoogle Scholar
  31. 31.
    J. Zhang, S. Liu, J. Yu, M. Jaroniec, J. Mater. Chem. 21, 14655–14662 (2011)CrossRefGoogle Scholar
  32. 32.
    E.K. Goharshadi, S.H. Sajjadi, R. Mehrkhah, P. Nancarrow, Chem. Eng. J. 209, 113–117 (2012)CrossRefGoogle Scholar
  33. 33.
    S. Xiong, B. Xi, C. Wang, D. Xu, X. Feng, Z. Zhu, Y. Qian, Adv. Funct. Mater. 17, 2728–2738 (2007)CrossRefGoogle Scholar
  34. 34.
    Y. Liu, J. Hu, C. Ngo, S. Prikhodko, S. Kodambaka, J. Li, R. Richards, Appl. Catal. B 106, 212–219 (2011)CrossRefGoogle Scholar
  35. 35.
    C. Lan, J. Gong, Y. Jiang, Y. Song, S. Yang, CrystEngComm 14, 708–712 (2012)CrossRefGoogle Scholar
  36. 36.
    H. Lee, Y. Park, M. Kang, J. Ind. Eng. Chem. 19, 1162–1168 (2013)CrossRefGoogle Scholar
  37. 37.
    H. Ma, J. Han, Y. Fu, Y. Song, C. Yu, X. Dong, Appl. Catal. B 102, 417–423 (2011)CrossRefGoogle Scholar
  38. 38.
    A. Kudo, M.J.C.C. Sekizawa, Adv. Mater. 15, 1371–1372 (2000)Google Scholar
  39. 39.
    T. Arai, S.-I. Senda, Y. Sato, H. Takahashi, K. Shinoda, B. Jeyadevan, K. Tohji, Chem. Mater. 20, 1997–2000 (2008)CrossRefGoogle Scholar
  40. 40.
    S.K. Apte, S.N. Garaje, S.S. Arbuj, B.B. Kale, J.O. Baeg, U.P. Mulik, S.D. Naik, D.P. Amalnerkar, S.W. Gosavi, J. Mater. Chem. 21, 19241–19248 (2011)CrossRefGoogle Scholar
  41. 41.
    R. Xing, Y. Xue, X. Liu, B. Liu, B. Miao, W. Kang, S. Liu, CrystEngComm 14, 8044–8048 (2012)CrossRefGoogle Scholar
  42. 42.
    H. She, M. Jiang, P. Yue, J. Huang, L. Wang, J. Li, G. Zhu, Q. Wang, J. Colloid Interface Sci. 549, 80–88 (2019)CrossRefGoogle Scholar
  43. 43.
    S.J.A. Moniz, S.A. Shevlin, D.J. Martin, Z.-X. Guo, J. Tang, Energ. Environ. Sci. 8, 731–759 (2015)Google Scholar
  44. 44.
    Y. Wang, Q. Wang, X. Zhan, F. Wang, M. Safdar, J. He, Nanoscale 5, 8326–8339 (2013)CrossRefGoogle Scholar
  45. 45.
    M. Tahir, C. Cao, N. Mahmood, F.K. Butt, A. Mahmood, F. Idrees, S. Hussain, M. Tanveer, Z. Ali, I. Aslam, A.C.S. Appl, Mater. Interface 6, 1258–1265 (2014)CrossRefGoogle Scholar
  46. 46.
    J. Zhang, F. Ren, M. Deng, Y. Wang, Phys. Chem. Chem. Phys. 17, 10218–10226 (2015)CrossRefGoogle Scholar
  47. 47.
    P. Kumar, E. Vahidzadeh, U.K. Thakur, P. Kar, K.M. Alam, A. Goswami, N. Mahdi, K. Cui, G.M. Bernard, V.K. Michaelis, K. Shankar, J. Am. Chem. Soc. 141(13), 5415–5436 (2019)CrossRefGoogle Scholar
  48. 48.
    F. Rao, G. Zhu, M. Hojamberdiev, W. Zhang, S. Li, J. Gao, F. Zhang, Y. Huang, Y. Huang, J. Phys. Chem. C 123(26), 16268–16280 (2019)CrossRefGoogle Scholar
  49. 49.
    X. Wang, K. Maeda, X. Chen, K. Takanabe, K. Domen, Y. Hou, X. Fu, M. Antonietti, J. Am. Chem. Soc. 131, 1680–1681 (2009)CrossRefGoogle Scholar
  50. 50.
    A. Kumar, P. Kumar, R. Borkar, A. Bansiwal, N. Labhsetwar, S.L. Jain, Carbon 123, 371–379 (2017)CrossRefGoogle Scholar
  51. 51.
    M.Q. Wen, T. Xiong, Z.G. Zang, W. Wei, X.S. Tang, F. Dong, Opt. Express 24, 10205–10212 (2016)CrossRefGoogle Scholar
  52. 52.
    X. Ma, X. Li, M. Li, X. Ma, L. Yu, Y. Dai, Appl. Surf. Sci. 414, 124–130 (2017)CrossRefGoogle Scholar
  53. 53.
    S.W. Hu, L.W. Yang, Y. Tian, X.L. Wei, J.W. Ding, J.X. Zhong, P.K. Chu, Appl. Catal. B 163, 611–622 (2015)CrossRefGoogle Scholar
  54. 54.
    W.-J. Ong, L.-L. Tan, Y.H. Ng, S.-T. Yong, S.-P. Chai, Chem. Rev. 116(12), 7159–7329 (2016)CrossRefGoogle Scholar
  55. 55.
    X. Liu, X. Jian, H. Yang, H. Dai, X. Song, Z. Liang, Mater. Lett. 176, 209–212 (2016)CrossRefGoogle Scholar
  56. 56.
    L. Ge, C. Han, Appl. Catal. B 117–118, 268–274 (2012)CrossRefGoogle Scholar
  57. 57.
    W.-J. Ong, L.-L. Tan, Y.H. Ng, S.-T. Yong, S.-P. Chai, Chem. Rev. 116, 7159–7329 (2016)CrossRefGoogle Scholar
  58. 58.
    A.C.S. Alcântara, M. Darder, P. Aranda, E. Ruiz-Hitzky, Appl. Clay Sci. 96, 2–8 (2014)CrossRefGoogle Scholar
  59. 59.
    L. Bouna, B. Rhouta, L. Daoudi, F. Maury, M. Amjoud, F. Senocq, M.C. Lafont, A. Jada, A.A. Aghzzaf, Clay. Clay. Miner. 60, 278–290 (2012)CrossRefGoogle Scholar
  60. 60.
    M. Darder, C.R.S. Matos, P. Aranda, R.F. Gouveia, E. Ruiz-Hitzky, Carbohyd. Polym. 157, 1933–1939 (2017)CrossRefGoogle Scholar
  61. 61.
    J. Pérez-Carvajal, P. Aranda, S. Obregón, G. Colón, E. Ruiz-Hitzky, Microporous Mesoporous Mater. 222, 120–127 (2016)CrossRefGoogle Scholar
  62. 62.
    L.F. Chen, H.W. Liang, Y. Lu, C.H. Cui, S.H. Yu, Langmuir 27(14), 8998–9004 (2011)CrossRefGoogle Scholar
  63. 63.
    J. Ran, T.Y. Ma, G. Gao, X.-W. Du, S.Z. Qiao, Energy. Environ. Sci. 8(12), 3708–3717 (2015)Google Scholar
  64. 64.
    J. Zhang, X. Liu, Phys. Chem. Chem. Phys. 16(18), 8655–8660 (2014)CrossRefGoogle Scholar
  65. 65.
    J. Zhang, R. He, X. Liu, Nanotechnology 24(50), 505401 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Environmental Science and Engineering, Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of EducationChang’an UniversityXi’anChina
  2. 2.College of Geography and Environment ScienceNorthwest Normal UniversityLanzhouChina

Personalised recommendations