Advertisement

Fabrication and comprehensive investigation on structural, morphological and electrical properties of polyvinylidene fluoride–nickel oxide nanocomposite thin films

  • Gurpreet KaurEmail author
  • Dinesh Singh Rana
Article
  • 28 Downloads

Abstract

This study is mainly centered on augmenting the β-phase content in polyvinylidene fluoride (PVDF) films by adding nickel oxide (NiO) for sensors and actuators applications. PVDF–NiO nanocomposite films with varying concentration of NiO were fabricated by simple sol–gel casting technique. The impact of NiO nanofiller on physical, structural, morphological and electrical properties of PVDF–NiO nanocomposite films were investigated by X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), Fourier transformed infrared spectroscopy (FTIR) and current–voltage (I–V characteristics) measurements. The XRD pattern show the semi-crystalline structure of PVDF–NiO nanocomposite films and possesses crystalline α and β phases. The estimated structural parameters such as crystalline size, micro strain and dislocation density have also been estimated from the XRD data. XRD and FTIR spectra of PVDF–NiO nanocomposite films confirm the reduction in the intensities of α phase with the dominance of electroactive β-phase as compare to pristine PVDF. As a result, the β-phase content increases and crystallinity also increase from 52% (for pristine PVDF) to 66% (7 wt% NiO). SEM images showed the uniform distribution of NiO particles within the PVDF pattern with the increase in porosity which enhances the ionic conductivity. The significant increase in the ionic conductivity is also analyzed by I–V characteristics which make this nanocomposite suitable for miniaturized electronic devices.

Notes

References

  1. 1.
    D.S. Rana, D.K. Chaturvedi, J.K. Quamara, J. Optoelectron. Adv. Mater. 6, 642 (2012)Google Scholar
  2. 2.
    D.S. Rana, D.K. Chaturvedi, J.K. Quamara, J. Eng. Tribol. 224, 667 (2010)Google Scholar
  3. 3.
    K.-Y. Shin, J.S. Lee, J. Janga, Nano Energy 22, 95 (2016)CrossRefGoogle Scholar
  4. 4.
    K. Pramod, R.B. Gangineni, Org. Electron. 42, 47 (2017)CrossRefGoogle Scholar
  5. 5.
    M. Mahdi Abolhasani, K. Shirvanimoghaddam, M. Naebe, Compos. Sci. Technol. 138, 49 (2017)CrossRefGoogle Scholar
  6. 6.
    K. Parida, V. Bhavanasi, V. Kumar, J. Wang, P.S. Lee, J. Power Sources 342, 70 (2017)CrossRefGoogle Scholar
  7. 7.
    Y. Sui, W.T. Chen, J.-J. Ma, R.-H. Hu, D.-S. Liu, J. RSC Adv. 6, 7364 (2016)CrossRefGoogle Scholar
  8. 8.
    H. Kim, F. Torres, D. Villgran, C. Stewart, Y. Lin, T.L.B. Tseng, Macromol. Mater. Eng. 302(11), 1700229 (2017)CrossRefGoogle Scholar
  9. 9.
    J.S. Andrew, D.R. Clarke, Langmuir 24, 670 (2008)CrossRefGoogle Scholar
  10. 10.
    D.S. Rana, D.K. Chaturvedi, J.K. Quamara, J. Optoelectron. Adv. Mater. 11, 705 (2009)Google Scholar
  11. 11.
    D.S. Rana, D.K. Chaturvedi, J.K. Quamara, J. Mater. Eng. Perform. 20, 276 (2011)CrossRefGoogle Scholar
  12. 12.
    A.M. Gaur, D.S. Rana, J. Mater. Sci. Mater. Electron. 27, 2293 (2016)CrossRefGoogle Scholar
  13. 13.
    L. Lee, S.J. Park, S. Kim, Solid State Ion. 234, 19 (2013)CrossRefGoogle Scholar
  14. 14.
    A.M. Gaur, D.S. Rana, J. Inorg. Organomet. Polym. Mater. (2019).  https://doi.org/10.1007/s10904-019-01126-y Google Scholar
  15. 15.
    M.F. Lin, P.S. Lee, J. Mater. Chem. 1(46), 14455 (2013)CrossRefGoogle Scholar
  16. 16.
    A.M. Gaur, D.S. Rana, J. Mater. Sci. Mater. Electron. 26, 1246 (2015)CrossRefGoogle Scholar
  17. 17.
    W. Huang, Z. Li, X. Chen, P. Tian, J. Lu, Z. Zhou, Composites B 62, 126 (2014)CrossRefGoogle Scholar
  18. 18.
    R.A.C. Amoresi, A.A. Felix, E.R. Botero, N.L.C. Domingues, E.A. Falcao, M.A. Zaghete, A.W. Rinaldi, Ceram. Int. 41, 14733 (2015)CrossRefGoogle Scholar
  19. 19.
    H. Parangusan, D. Ponnamma, M. Al Ali AlMaadeed, RSC Adv. 7, 50156 (2017)CrossRefGoogle Scholar
  20. 20.
    X. Cai, T. Lei, D. Sun, L. Lin, RSC Adv. 7, 15382 (2017)CrossRefGoogle Scholar
  21. 21.
    D. Mandal, K. Henkel, D. Schmeiber, Mater. Lett. 73, 123 (2012)CrossRefGoogle Scholar
  22. 22.
    B.S. Ince-Gunduz, R. Alpern, D. Amare, J. Crawford, B. Dolan, S. Jones, Polymer 51(6), 1485 (2010)CrossRefGoogle Scholar
  23. 23.
    H. Shao, J. Fang, H. Wang, T. Lin, RSC Adv. 5(19), 14345 (2015)CrossRefGoogle Scholar
  24. 24.
    H. Shao, J. Fang, H. Wang, T. Lin, G. Yan, C. Lan, Macromol. Mater. Eng. 302, 1600451 (2017)CrossRefGoogle Scholar
  25. 25.
    P. Martins, C.M. Costa, M. Benelmekki, G. Bothell, S.L. Menez, CrystEngComm 14(8), 2807 (2012)CrossRefGoogle Scholar
  26. 26.
    P. Thakur, A. Kool, B. Bagchi, S. Das, P. Nandy, Appl. Clay Sci. 99, 149 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of InstrumentationKurukshetra UniversityKurukshetraIndia

Personalised recommendations