Advertisement

Structure and properties of Ta/Al/Ta and Ti/Al/Ti/Au multilayer metal stacks formed as ohmic contacts on n-GaN

  • Ievgen Boturchuk
  • Thomas Walter
  • Brian Julsgaard
  • Golta Khatibi
  • Sabine Schwarz
  • Michael Stöger-Pollach
  • Kjeld Pedersen
  • Vladimir N. PopokEmail author
Article
  • 17 Downloads

Abstract

Formation of ohmic contacts to GaN is of high practical importance for device fabrication. Due to the wide band gap, formation of multilayer metal structures is required to make electrical connections with low contact resistance. The paper presents a study on structure, composition, adhesion and electrical properties of Ti/Al/Ti/Au and Ta/Al/Ta metal stacks fabricated by e-beam evaporation and thermal annealing in order to provide ohmic contacts to n-type GaN films grown on Si. For the Ti-based case, an interdiffusion of Au and Ga into the stack is found, which is probably caused by a granular structure of the top Ti layer making no proper barrier. Ti of the bottom layer is observed to diffuse into GaN, forming a thin layer of titanium nitride with a low Schottky barrier at GaN interface allowing ohmic contact as shown by electrical measurements. The Ta-based stacks have the expected layered structure with minor interdiffusion of Al and Ta at the interfaces of these two metals. No direct microscopic evidences for Ta diffusion into GaN is observed. However, the formation of a thin tantalum nitride layer at the GaN interface can be deduced from the current–voltage measurements showing ohmic electrical contacts with low contact resistivity of 1.2 × 10−3 Ω cm2. Four-point bending tests on the both types of samples show that cracks always develop at the interface between Si and buffer layers of GaN. No exfoliation of the metallization layers is observed allowing us to conclude about good adhesion of the metal stacks. Thus, the fabricated Ti- and Ta-based multilayer structures show good electrical performance and reliable adhesion making them promising for the formation of ohmic contacts to n-type GaN.

Notes

Acknowledgements

The authors acknowledge John Lundsgaard Hansen, Bjarke Rolighed Jeppesen, and Folmer Lyckegaard from Aarhus University for the assistance with the sample preparation, as well as Dr. Piotr Caban and Dr. Tim Ciuk from Institute of Electronic Materials Technology, Warsaw, for the help with annealing. The authors acknowledge the financial support from the Innovation Fund Denmark under the project “Semiconductor materials for power electronics - SEMPEL”, from the Austrian Federal Ministry for Digital and Economic Affairs and the National Foundation for Research, Technology and Development.

References

  1. 1.
    J. Millan, P. Godignon, X. Perpina, A. Perez-Tomas, J. Rebollo, IEEE Trans. Power Electron. 29(5), 2155–2163 (2014)CrossRefGoogle Scholar
  2. 2.
    E.A. Jones, F. Wang, D. Costinett, IEEE J. Emerg. Select. Top. Power Electron. 4(3), 707–719 (2016)CrossRefGoogle Scholar
  3. 3.
    H. Amano et al., J. Phys. D: Appl. Phys. 51, 163001 (2018)CrossRefGoogle Scholar
  4. 4.
    D. Shahin, A. Christoua, ECS Trans. 64(7), 203–211 (2014)CrossRefGoogle Scholar
  5. 5.
    H. Jin, L. Qin, L. Zhang, X. Zeng, R. Yang, MATEC Web Conf. 40, 01006 (2016)CrossRefGoogle Scholar
  6. 6.
    V.N. Bessolov, E.V. Konenkova, S.A. Kukushkin, A.V. Osipov, S.N. Rodin, Rev. Adv. Mater. Sci. 38, 75–93 (2014)Google Scholar
  7. 7.
    S.A. Kukushkin, A.V. Osipov, V.N. Bessolov, B.K. Medvedev, V.K. Nevolin, K.A. Tcarik, Rev. Adv. Mater. Sci. 17, 1–32 (2008)Google Scholar
  8. 8.
    M.M. Rozhavskaya, S.A. Kukushkin, A.V. Osipov, A.V. Myasoedov, S.I. Troshkov, L.M. Sorokin, R.S. Telyatnik, R.R. Juluri, K. Pedersen, V.N. Popok, Phys. Stat. Sol. A 214(10), 1700190 (2017)CrossRefGoogle Scholar
  9. 9.
    V.N. Popok, T.S. Aunsborg, R.H. Godiksen, P.K. Kristensen, R.R. Juluri, P. Caban, K. Pedersen, Rev. Adv. Mater. Sci. 57(1), 72–81 (2018)CrossRefGoogle Scholar
  10. 10.
    O. Ambacher, J. Smart, J.R. Shealy, N.G. Weimann, K. Chu, M. Murphy, W.J. Schaff, L.F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, J. Hilsenbeck, J. Appl. Phys. 85(6), 3222–3233 (1999)CrossRefGoogle Scholar
  11. 11.
    E. Ahmadi, S. Keller, U.K. Mishra, J. Appl. Phys. 120, 115302 (2016)CrossRefGoogle Scholar
  12. 12.
    J. Bergsten, J.-T. Chen, S. Gustafsson, A. Malmros, U. Forsberg, M. Thorsell, E. Janzen, N. Rorsman, IEEE Trans. Electron. Dev. 63(1), 333–338 (2016)CrossRefGoogle Scholar
  13. 13.
    V. Portz, M. Schnedler, H. Eisele, R.E. Dunin-Borkowski, P.H. Ebert, Phys. Rev. B 97, 115433 (2018)CrossRefGoogle Scholar
  14. 14.
    G. Greco, F. Iucolano, F. Roccaforte, Appl. Surf. Sci. 383, 324–345 (2016)CrossRefGoogle Scholar
  15. 15.
    A. Motayed, R. Bathe, M.C. Wood, O.S. Diouf, R.D. Vispute, S.N. Mohammad, J. Appl. Phys. 93, 1087 (2003)CrossRefGoogle Scholar
  16. 16.
    L. Pang, K. Kim, Mater. Sci. Semicond. Process. 29, 90–94 (2015)CrossRefGoogle Scholar
  17. 17.
    A. Malmros, H. Blanck, N. Rorsman, Semicond. Sci. Technol. 26, 075006 (2011)CrossRefGoogle Scholar
  18. 18.
    A. Pooth, J. Bergsten, N. Rorsman, H. Hirshy, R. Perks, P. Tasker, T. Martin, R.F. Webster, D. Cherns, M.J. Uren, M. Kuball, Microelectron. Reliabil. 68, 2–4 (2017)CrossRefGoogle Scholar
  19. 19.
    I. Hofinger, M. Oechsner, H.-A. Bahr, M.V. Swain, J. Fract. 92, 213–220 (1998)CrossRefGoogle Scholar
  20. 20.
    B.P. Johnson, C.I. Huang, J. Electrochem. Soc. 125(3), 473–475 (1978)CrossRefGoogle Scholar
  21. 21.
    G.K. Reeves, Sol. State Electron. 23(5), 487–490 (1980)CrossRefGoogle Scholar
  22. 22.
    L. Wang, F.M. Mohammed, I. Adesida, J. Appl. Phys. 103, 093516 (2008)CrossRefGoogle Scholar
  23. 23.
    A. Fontserè, A. Pérez-Tomás, M. Placidi, J. Llobet, N. Baron, S. Chenot, Y. Cordier, J.C. Moreno, P.M. Gammon, M.R. Jennings, M. Porti, A. Bayerl, M. Lanza, M. Nafría, Appl. Phys. Lett. 99(21), 213504 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityAarhus CDenmark
  2. 2.Christian Doppler Laboratory Lifetime and Reliability of Interfaces in Complex Multi-Material ElectronicsTechnische Universität WienViennaAustria
  3. 3.Department of Physics and AstronomyAarhus UniversityAarhus CDenmark
  4. 4.University Service Center for Transmission Electron MicroscopyTechnische Universität WienViennaAustria
  5. 5.Department of Materials and ProductionAalborg UniversityAalborgDenmark

Personalised recommendations