Advertisement

Electromagnetic and microwave absorption properties of coatings based on spherical and flaky carbonyl iron

  • Yunxing Pan
  • Guojia MaEmail author
  • Xing Liu
  • Chenghao Wang
  • Nan Li
  • Jinyan Wang
  • Xigao JianEmail author
Article
  • 17 Downloads

Abstract

Single-layer and double-layer polyurethane (PU) matrix coatings containing spherical carbonyl iron (SCI) and flaky carbonyl iron (FCI) were designed and prepared by using a simple and effective manufacturing method, and the thickness of the coatings was kept at 1.5 mm. The complex permittivity, complex permeability and absorption properties of the coatings were investigated in the frequency range of 2–18 GHz. The results indicate that all the single-layer and double-layer coatings exhibit excellent absorption properties and wide absorption bands. By optimizing the filler radio and coating structure, the optimal reflection loss (RL) value can reach − 35 dB at 8.6 GHz and make the widest absorption band reach 15.5 GHz (2.5–18.0 GHz) and 4.9 GHz (10.7–15.6 GHz) for RL < − 5 dB and RL < − 10 dB, respectively. The coatings of SCI/FCI/PU exhibit a broad effective absorption bandwidth, which can be effectively applied to radar signature reduction and electromagnetic interference suppression in military and civil fields.

Notes

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2017YFB0307600) and the National Science Foundation of China (Nos. 91860204; U1837205; U1663226).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Z. An, S. Pan, J. Zhang, Facile preparation and electromagnetic properties of core–shell composite spheres composed of aloe-like nickel flowers assembled on hollow glass spheres. J. Phys. Chem. C 113, 2715–2721 (2009)CrossRefGoogle Scholar
  2. 2.
    M. Cao, R. Qin, C. Qiu, J. Zhu, Matching design and mismatching analysis towards radar absorbing coatings based on conducting plate. Mater. Des. 24, 391–396 (2003)CrossRefGoogle Scholar
  3. 3.
    R.C. Che, L.M. Peng, X.F. Duan, Q. Chen, X.L. Liang, Microwave absorption enhancement and complex permittivity and permeability of fe encapsulated within carbon nanotubes. Adv. Mater. 16, 401–405 (2004)CrossRefGoogle Scholar
  4. 4.
    S.S. Kim, S.T. Kim, Y.C. Yoon, K.S. Lee, Magnetic, dielectric, and microwave absorbing properties of iron particles dispersed in rubber matrix in gigahertz frequencies. J. Appl. Phys. 97, 10F905 (2005)CrossRefGoogle Scholar
  5. 5.
    J. Zhou, J. He, G. Li et al., Direct incorporation of magnetic constituents within ordered mesoporous carbon–silica nanocomposites for highly efficient electromagnetic wave absorbers. J. Phys. Chem. C 114, 7611–7617 (2010)CrossRefGoogle Scholar
  6. 6.
    T. Giannakopoulou, A. Oikonomou, G. Kordas, Double-layer microwave absorbers based on materials with large magnetic and dielectric losses. J. Magn. Magn. Mater. 271, 224–229 (2004)CrossRefGoogle Scholar
  7. 7.
    M. Wang, Y. Duan, S. Liu, X. Li, Z. Ji, Absorption properties of carbonyl-iron/carbon black double-layer microwave absorbers. J. Magn. Magn. Mater. 321, 3442–3446 (2009)CrossRefGoogle Scholar
  8. 8.
    R.B. Yang, W.F. Liang, Microwave properties of high-aspect-ratio carbonyl iron/epoxy absorbers. J. Appl. Phys. 109, 178 (2011)Google Scholar
  9. 9.
    L. He, Z. Yan, L. Xing, P. Liu, Y. Du, Preparation of reduced graphene oxide coated flaky carbonyl iron composites and their excellent microwave absorption properties. RSC Adv. 8, 2971–2977 (2018)CrossRefGoogle Scholar
  10. 10.
    M.S. Kim, E.H. Min, J.G. Koh, Comparison of the effects of particle shape on thin FeSiCr electromagnetic wave absorber. J. Magn. Magn. Mater. 321, 581–585 (2009)CrossRefGoogle Scholar
  11. 11.
    Y. Fan, H. Yang, M. Li, G. Zou, Evaluation of the microwave absorption property of flake graphite. Mater. Chem. Phys. 115, 696–698 (2009)CrossRefGoogle Scholar
  12. 12.
    Y. Yang, B. Zhang, W. Xu et al., Preparation and properties of a novel iron-coated carbon fiber. J. Magn. Magn. Mater. 256, 129–132 (2003)CrossRefGoogle Scholar
  13. 13.
    Y. Zhang, H. Li, X. Yang et al., Additive manufacturing of carbon nanotube-photopolymer composite radar absorbing materials. Polym. Compos. 39, 671–676 (2016)CrossRefGoogle Scholar
  14. 14.
    Y. Duan, Y. Liu, Y. Cui, G. Ma, W. Tongmin, Graphene to tune microwave absorption frequencies and enhance absorption properties of carbonyl iron/polyurethane coating. Prog. Org. Coat. 125, 89–98 (2018)CrossRefGoogle Scholar
  15. 15.
    S.M. Abbas, M. Chandra, A. Verma, R. Chatterjee, T.C. Goel, Complex permittivity and microwave absorption properties of a composite dielectric absorber. Composite A 37, 2148–2154 (2006)CrossRefGoogle Scholar
  16. 16.
    L. Jing, G. Wang, Y. Duan, Y. Jiang, Synthesis and electromagnetic characteristics of the flake-shaped barium titanate powder. J. Alloys Compd. 475, 862–868 (2009)CrossRefGoogle Scholar
  17. 17.
    H.C. Pant, M.K. Patra, A. Verma, S.R. Vadera, N. Kumar, Study of the dielectric properties of barium titanate–polymer composites. Acta Mater. 54, 3163–3169 (2006)CrossRefGoogle Scholar
  18. 18.
    P. Saini, V. Choudhary, B.P. Singh, R.B. Mathur, S.K. Dhawan, Polyaniline–MWCNT nanocomposites for microwave absorption and EMI shielding. Mater. Chem. Phys. 113, 919–926 (2009)CrossRefGoogle Scholar
  19. 19.
    V.T. Truong, S.Z. Riddell, R.F. Muscat, Polypyrrole based microwave absorbers. J. Mater. Sci. 33, 4971–4976 (1998)CrossRefGoogle Scholar
  20. 20.
    P. Bhattacharya, C.K. Das, In situ synthesis and Characterization of CuFe10Al2O19/MWCNT Nanocomposites for supercapacitor and microwave-absorbing applications. Ind. Eng. Chem. Res. 52, 9594–9606 (2013)CrossRefGoogle Scholar
  21. 21.
    Q. Ding, M. Zhang, C. Zhang, T. Qian, Synthesis and absorbing mechanism of two-layer microwave absorbers containing polycrystalline iron fibers and carbonyl iron. J. Magn. Magn. Mater. 331, 77–81 (2013)CrossRefGoogle Scholar
  22. 22.
    M.R. Meshram, N.K. Agrawal, B. Sinha, P.S. Misra, Characterization of M-type barium hexagonal ferrite-based wide band microwave absorber. J. Magn. Magn. Mater. 271, 207–214 (2004)CrossRefGoogle Scholar
  23. 23.
    M. Najim, G. Modi, Y.K. Mishra, R. Adelung, D. Singh, V. Agarwala, Ultra-wide bandwidth with enhanced microwave absorption of electroless Ni-P coated tetrapod-shaped ZnO nano- and microstructures. Phys. Chem. Chem. Phys. 17, 22923–22933 (2015)CrossRefGoogle Scholar
  24. 24.
    Y. Qing, W. Zhou, F. Luo, D. Zhu, Microwave-absorbing and mechanical properties of carbonyl-iron/epoxy-silicone resin coatings. Mater. Rev. 321, 25–28 (2009)Google Scholar
  25. 25.
    J. Zhao, H. Zhang, X. Ou, Tailoring the shape and size of Fe3O4 nanocrystals by oxidation–precipitation processes for microwave absorption enhancement. J. Mater. Sci. 30, 4943–4952 (2019)Google Scholar
  26. 26.
    J. He, W. Wei, J. Guan, Internal strain dependence of complex permeability of ball milled carbonyl iron powders in 2–18 GHz. J. Appl. Phys. 111, 093924 (2012)CrossRefGoogle Scholar
  27. 27.
    W. Wei, J. Guo, L. Chang, L. Wei, J. Guan, Flaky carbonyl iron particles with both small grain size and low internal strain for broadband microwave absorption. J. Alloys Compd. 637, 106–111 (2015)CrossRefGoogle Scholar
  28. 28.
    P. Liu, L. Li, Z. Yao, J. Zhou, M. Du, T. Yao, Synthesis and excellent microwave absorption property of polyaniline nanorods coated Li 0.435 Zn 0.195 Fe 2.37 O 4 nanocomposites. J. Mater. Sci. 27, 7776–7787 (2016)Google Scholar
  29. 29.
    G.S. Wang, Y.Y. Wu, X.J. Zhang, Y. Li, L. Guo, M.S. Cao, Controllable synthesis of uniform ZnO nanorods and their enhanced dielectric and absorption properties. J. Mater. Chem. A 2, 8644–8651 (2014)CrossRefGoogle Scholar
  30. 30.
    H. Yang, M. Cao, Y. Li et al., Enhanced dielectric properties and excellent microwave absorption of SiC powders driven with NiO nanorings. Adv. Opt. Mater. 2, 214–219 (2014)CrossRefGoogle Scholar
  31. 31.
    M. Zhou, X. Zhang, J. Wei, S. Zhao, L. Wang, B. Feng, Morphology-controlled synthesis and novel microwave absorption properties of hollow Urchinlike α-MnO2 nanostructures. J. Phys. Chem. C 115, 1398–1402 (2011)CrossRefGoogle Scholar
  32. 32.
    C.L. Zhu, M.L. Zhang, Y.J. Qiao, G. Xiao, F. Zhang, Y.J. Chen, Fe3O4/TiO2 Core/shell nanotubes: synthesis and magnetic and electromagnetic wave absorption characteristics. J. Phys. Chem. C 114, 16229–16235 (2010)CrossRefGoogle Scholar
  33. 33.
    E. Açıkalın, K. Çoban, A. Sayıntı, Nanosized hybrid electromagnetic wave absorbing coatings. Prog. Org. Coat. 98, 2–5 (2016)CrossRefGoogle Scholar
  34. 34.
    A. Ansari, M.J. Akhtar, Investigation on electromagnetic characteristics, microwave absorption, thermal and mechanical properties of ferromagnetic cobalt–polystyrene composites in the X-band (8.4–12.4 GHz). RSC Adv. 6, 13846–13857 (2016)CrossRefGoogle Scholar
  35. 35.
    X.D. Guo, X.J. Qiao, Q.G. Ren, X. Wan, W.C. Li, Z.G. Sun, Synthesis and microwave-absorbing properties of Co 3 Fe 7 @C core–shell nanostructure. Appl. Phys. A 120, 1–10 (2015)Google Scholar
  36. 36.
    T. Thomas, B.P. Kanoth, C.M. Nijas et al., Preparation and characterization of flexible ferromagnetic nanocomposites for microwave applications. Mater. Sci. Eng., B 200, 40–49 (2015)CrossRefGoogle Scholar
  37. 37.
    B. Wang, J. Zhang, T. Wang, L. Qiao, F. Li, Synthesis and enhanced microwave absorption properties of Ni@Ni2O3 core–shell particles. J. Alloys Compd. 567, 21–25 (2013)CrossRefGoogle Scholar
  38. 38.
    G. Wang, Y. Chang, L. Wang, C. Liu, Synthesis, characterization and microwave absorption properties of Fe3O4/Co core/shell-type nanoparticles. Adv. Powder Technol. 23, 861–865 (2012)CrossRefGoogle Scholar
  39. 39.
    J. Zeng, L. Tian, J. Xue, F. Lan, Wide-frequency microwave absorption properties of CuO/Ag/carbon sphere composites. J. Alloys Compd. 647, 768–770 (2015)CrossRefGoogle Scholar
  40. 40.
    M.A. Abshinova, A.V. Lopatin, N.E. Kazantseva, J. Vilčáková, P. Sáha, Correlation between the microstructure and the electromagnetic properties of carbonyl iron filled polymer composites. Composite A 38, 2471–2485 (2007)CrossRefGoogle Scholar
  41. 41.
    F. Wen, W. Zuo, H. Yi, N. Wang, L. Qiao, F. Li, Microwave-absorbing properties of shape-optimized carbonyl iron particles with maximum microwave permeability. Physica B 404, 3567–3570 (2009)CrossRefGoogle Scholar
  42. 42.
    B. Zhang, Y. Feng, J. Xiong, Y. Yang, H. Lu, Microwave-absorbing properties of de-aggregated flake-shaped carbonyl-iron particle composites at 2-18 GHz. IEEE Trans. Magn. 42, 1778–1781 (2006)CrossRefGoogle Scholar
  43. 43.
    M. Cao, B. Wang, Q. Li et al., Towards an intelligent CAD system for multilayer electromagnetic absorber design. Mater. Des. 19, 113–120 (1998)CrossRefGoogle Scholar
  44. 44.
    Y. Duan, Y. Yang, M. He, S. Liu, X. Cui, H. Chen, Absorbing properties of α-manganese dioxide/carbon black double-layer composites. J. Phys. D 41, 1854–1862 (2008)CrossRefGoogle Scholar
  45. 45.
    Y. Li, C. Chen, X. Pan et al., Multiband microwave absorption films based on defective multiwalled carbon nanotubes added carbonyl iron/acrylic resin. Phys. B 404, 1343–1346 (2009)CrossRefGoogle Scholar
  46. 46.
    Y. Qing, D. Min, Y. Zhou, F. Luo, W. Zhou, Graphene nanosheet- and flake carbonyl iron particle-filled epoxy–silicone composites as thin–thickness and wide-bandwidth microwave absorber. Carbon 86, 98–107 (2015)CrossRefGoogle Scholar
  47. 47.
    J.R. Liu, M. Itoh, T. Horikawa, M. Itakura, N. Kuwano, K. Machida, Complex permittivity, permeability and electromagnetic wave absorption of agr-Fe/C(amorphous) and Fe2B/C(amorphous) nanocomposites. J. Phys. D 37, 2737–2741 (2004)CrossRefGoogle Scholar
  48. 48.
    S. Ramo, J.R. Whinnery, T. Van Duzer, Fields and Waves in Communication Electronics (Wiley, New York, 1994), pp. 238–241Google Scholar
  49. 49.
    B.Y. Feng, T. Qiu, Y.C. Shen, Absorbing properties and structural design of microwave absorbers based on carbonyl iron and barium ferrite. J. Magn. Magn. Mater. 318, 8–13 (2007)CrossRefGoogle Scholar
  50. 50.
    R.G. Yang, Electromagnetic properties and microwave absorption properties of BaTiO3—carbonyl iron composite in S and C bands. J. Magn. Magn. Mater. 323, 1805–1810 (2011)CrossRefGoogle Scholar
  51. 51.
    L. Chen, Y. Duan, L. Liu, J. Guo, S. Liu, Influence of SiO fillers on microwave absorption properties of carbonyl iron/carbon black double-layer coatings. Mater. Des. 32, 570–574 (2011)CrossRefGoogle Scholar
  52. 52.
    T. Maeda, S. Sugimoto, T. Kagotani, N. Tezuka, K. Inomata, Effect of the soft/hard exchange interaction on natural resonance frequency and electromagnetic wave absorption of the rare earth–iron–boron compounds. J. Magn. Magn. Mater. 281, 195–205 (2004)CrossRefGoogle Scholar
  53. 53.
    Y.J. Chen, P. Gao, R.X. Wang et al., Porous Fe3O4/SnO2 core/shell nanorods: synthesis and electromagnetic properties. J. Phys. Chem. C 115, 10061–10064 (2009)CrossRefGoogle Scholar
  54. 54.
    W. Lei, H. Ying, S. Xu et al., Synthesis and microwave absorption enhancement of graphene@Fe3O4@SiO2@NiO nanosheet hierarchical structures. Nanoscale 6, 3157–3164 (2014)CrossRefGoogle Scholar
  55. 55.
    Y.C. Qing, W.C. Zhou, S. Jia, F. Luo, D.M. Zhu, Electromagnetic and microwave absorption properties of carbonyl iron and carbon fiber filled epoxy/silicone resin coatings. Appl. Phys. A 100, 1177–1181 (2010)CrossRefGoogle Scholar
  56. 56.
    Y. Qing, W. Zhou, S. Huang, Z. Huang, F. Luo, D. Zhu, Evolution of double magnetic resonance behavior and electromagnetic properties of flake carbonyl iron and multi-walled carbon nanotubes filled epoxy-silicone. J. Alloys Compd. 583, 471–475 (2014)CrossRefGoogle Scholar
  57. 57.
    Y. Qing, W. Zhou, F. Luo, D. Zhu, Epoxy-silicone filled with multi-walled carbon nanotubes and carbonyl iron particles as a microwave absorber. Carbon 48, 4074–4080 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Fine ChemicalsDalian University of TechnologyDalianChina
  2. 2.The Science and Technology on Power Beam Processes LaboratoryManufacturing Technology Institute, AVICBeijingChina

Personalised recommendations