Advertisement

Green synthesis of Pd nanoparticles supported on modified Nonpareil almond shell using almond hull extract: a beneficial nanocatalyst for convenient reduction of organic dyes

  • Mahnoosh Rashidi
  • Mohammad Reza IslamiEmail author
  • Ahmad Momeni Tikdari
Article
  • 4 Downloads

Abstract

In this investigation, palladium nanoparticles were synthesized by green and inexpensive method using Nonpareil almond hull, as a reducing and stabilizing agent without using any toxic solvent or capping agents. In this protocol, two separate methods were used to immobilize Pd NPs on the surface of green-waste Nonpareil almond shell (NAS) and modified Nonpareil almond shell was obtained as an environmentally benign support. The green synthesized nanocatalysts were characterized by UV–Vis spectroscopy, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), Brunauer–Emmett–Teller (BET), and transform electron microscopy (TEM). TEM images revealed that the Pd NPs immobilized on modified Nonpareil almond shell are spherical particles with average size of less than 20 nm without any agglomeration. In order to investigate the catalytic activity of green synthesized Nanocatalyst, it was used in the reduction of Methylene Blue (MB), Rhodamine 6G (R6G) and Methyl Orange (MO) at room temperature. The results showed that the modified nanocatalyst had a high catalytic activity in the reduction of these organic dyes. In addition, the nanocatalyst can be easily recycled and reused several times without losing its activity.

Notes

Acknowledgments

The authors express appreciation to the Shahid Bahonar University of Kerman Faculty Research committee funds for its support of this investigation.

References

  1. 1.
    S.B. Wang, Y. Boyjoo, A. Choueib, Z.H. Zhu, Removal of dyes from aqueous solution using fly ash and red mud. Water Res. 39(1), 129–138 (2005)Google Scholar
  2. 2.
    J.N. Tiwari, K. Mahesh, N.H. Le, K.C. Kemp, R. Timilsina, R.N. Tiwari, K.S. Kim, Reduced graphene oxide-based hydrogels for the efficient capture of dye pollutants from aqueous solutions. Carbon 56, 173–182 (2013)Google Scholar
  3. 3.
    K. Yu, S.G. Yang, C. Liu, H. Chen, H. Li, C. Sun, S.A. Boyd, Degradation of organic dyes via bismuth silver oxide initiated direct oxidation coupled with sodium bismuthate based visible light photocatalysis. Environ. Sci. Technol. 46(13), 7318–7326 (2012)Google Scholar
  4. 4.
    P. Veerakumar, S.M. Chen, R. Madhu, V. Veeramani, C.T. Hung, S.B. Liu, Nickel nanoparticle-decorated porous carbons for highly active catalytic reduction of organic dyes and sensitive detection of Hg(II) ions. ACS Appl. Mater. Interfaces 7(44), 24810–24821 (2015)Google Scholar
  5. 5.
    B. Vellaichamy, P. Periakaruppan, Ag nanoshell catalyzed dedying of industrial effluents. RSC Adv. 6(38), 31653–31660 (2016)Google Scholar
  6. 6.
    B. Manu, S. Chaudhari, Anaerobic decolorisation of simulated textile wastewater containing azo dyes. Bioresour. Technol. 82(3), 225–231 (2002)Google Scholar
  7. 7.
    P. Wilhelm, D. Stephan, Photodegradation of rhodamine B in aqueous solution via SiO2@ TiO2 nano-spheres. J. Photochem. Photobiol., A 185(1), 19–25 (2007)Google Scholar
  8. 8.
    K. Tanaka, K. Padermpole, T. Hisanaga, Photocatalytic degradation of commercial azo dyes. Water Res. 34(1), 327–333 (2000)Google Scholar
  9. 9.
    H.K. Kadam, S.G. Tilve, Advancement in methodologies for reduction of nitroarenes. RSC Adv. 5(101), 83391–83407 (2015)Google Scholar
  10. 10.
    Y.G. Wu, M. Wen, Q.S. Wu, H. Fang, Ni/graphene nanostructure and its electron-enhanced catalytic action for hydrogenation reaction of nitrophenol. J. Phys. Chem. C 118(12), 6307–6313 (2014)Google Scholar
  11. 11.
    F. Cheng, J.W. Betts, S.M. Kelly, J. Schaller, T. Heinze, Synthesis and antibacterial effects of aqueous colloidal solutions of silver nanoparticles using aminocellulose as a combined reducing and capping reagent. Green Chem. 15(4), 989–998 (2013)Google Scholar
  12. 12.
    F. Ahmadi, M. Rahimi-Nasrabadi, M. Behpour, Synthesis Nd2TiO5 nanoparticles with different morphologies by novel approach and its photocatalyst application. J. Mater. Sci. 28(2), 1531–1536 (2017)Google Scholar
  13. 13.
    M. Rahimi-Nasrabadi, S.M. Pourmortazavi, M. Aghazadeh, M.R. Ganjali, M.S. Karimi, P. Novrouzi, Optimizing the procedure for the synthesis of nanoscale gadolinium (III) tungstate as efficient photocatalyst. J. Mater. Sci. 28(4), 3780–3788 (2017)Google Scholar
  14. 14.
    M. Eghbali-Arani, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, S. Pourmasoud, Green synthesis and characterization of SmVO4 nanoparticles in the presence of carbohydrates as capping agents with investigation of visible-light photocatalytic properties. J. Mater. Sci. 47(7), 3757–3769 (2018)Google Scholar
  15. 15.
    A. Sobhani-Nasab, S. Pourmasoud, F. Ahmadi, M. Wysokowski, T. Jesionowski, H. Ehrlich, M. Rahimi-Nasrabadi, Synthesis and characterization of MnWO4/TmVO4 ternary nano-hybrids by an ultrasonic method for enhanced photocatalytic activity in the degradation of organic dyes. Mater. Lett. 238, 159–162 (2019)Google Scholar
  16. 16.
    M. Rahimi-Nasrabadi, F. Ahmadi, M. Eghbali-Arani, Simple morphology-controlled fabrication of CdTiO3 nanoparticles with the aid of different capping agents. J. Mater. Sci. 27(12), 13294–13299 (2016)Google Scholar
  17. 17.
    M. Rahimi-Nasrabadi, S.M. Pourmortazavi, M. Aghazadeh, M.R. Ganjali, M.S. Karimi, P. Norouzi, Fabrication, characterization and photochemical activity of ytterbium carbonate and ytterbium oxide nanoparticles. J. Mater. Sci. 28(13), 9478–9488 (2017)Google Scholar
  18. 18.
    M. Zhu, C. Wang, D. Meng, G. Diao, In situ synthesis of silver nanostructures on magnetic Fe3O4@C core–shell nanocomposites and their application in catalytic reduction reactions. J. Mater. Chem. A 1(6), 2118–2125 (2013)Google Scholar
  19. 19.
    A. Kumar, D. Saxena, M.K. Gupta, Nanoparticle catalyzed reaction (NPCR): ZnO-NP catalyzed Ugi-reaction in aqueous medium. Green Chem. 15(10), 2699–2703 (2013)Google Scholar
  20. 20.
    M. Nasrollahzadeh, S.M. Sajadi, A. Rostami-Vartooni, M. Bagherzadeh, Green synthesis, characterization and catalytic activity of natural bentonite-supported copper nanoparticles for the solvent-free synthesis of 1-substituted 1H-1,2,3,4-tetrazoles and reduction of 4-nitrophenol. J. Colloid Interface Sci. 6(1), 2300–2309 (2015)Google Scholar
  21. 21.
    R.K. Petla, S. Vivekanandhan, M. Misra, A.K. Mohanty, N. Satyanarayana, Soybean (glycine max) leaf extract based green synthesis of palladium nanoparticles. J. Biomater. Nanobiotechnol. 3(1), 14–19 (2012)Google Scholar
  22. 22.
    M. Bordbar, A. Yeganeh-Faal, B. Khodadadi, Effect of morphology on the photocatalytic behavior of ZnO nanostructures: low temperature sonochemical synthesis of Ni doped ZnO nanoparticles. J. Sol-Gel. Sci. Technol. 6(3), 190–198 (2016)Google Scholar
  23. 23.
    S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L.V. Elst, R.N. Muller, Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 108(6), 2064–2110 (2008)Google Scholar
  24. 24.
    K. Pan, H. Ming, H. Yu, Y. Liu, Z. Kang, H. Zhang, S.T. Lee, Different copper oxide nanostructures: synthesis, characterization, and application for C-N cross-coupling catalysis. Cryst. Res. Technol. 46(11), 1167–1174 (2011)Google Scholar
  25. 25.
    X. Huang, H. Wu, S. Pu, W. Zhang, X. Liao, B. Shi, One-step room-temperature synthesis of Au@Pd core–shell nanoparticles with tunable structure using plant tannin as reductant and stabilizer. Green Chem. 13(4), 950–957 (2011)Google Scholar
  26. 26.
    M.I. Husseiny, M.A. ElAziz, Y. Badr, M.A. Mahmoud, Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim. Acta Part A 67(3–4), 1003–1006 (2007)Google Scholar
  27. 27.
    P. Mukherjee, A. Ahmad, D. Mandal, S. Senapati, S.R. Sainkar, M.I. Khan, R. Ramani, R. Parischa, P.V. Ajayakumar, M. Alam, M. Sastry, R. Kumar, Bioreduction of AuCl4− ions by the fungus, verticillium sp. and surface trapping of the gold nanoparticles formed. Angew. Chem. Int. Ed. 40(19), 3585–3588 (2001)Google Scholar
  28. 28.
    M. Sastry, A. Ahmad, M.I. Khan, R. Kumar, Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr. Sci. 85(2), 162–170 (2003)Google Scholar
  29. 29.
    S.W. Lee, C. Mao, C.E. Flynn, A.M. Belcher, Ordering of quantum dots using genetically engineered viruses. Science 296(5569), 892–895 (2002)Google Scholar
  30. 30.
    A.M. Awwad, N.M. Salem, Q.M. Ibrahim, A.O. Abdeen, Phytochemical fabrication and characterization of silver/silver chloride nanoparticles using Albizia julibrissin flowers extract. Adv. Mater. Lett. 6(8), 726–730 (2015)Google Scholar
  31. 31.
    J. Virkutyte, R.S. Varma, Green synthesis of metal nanoparticles: biodegradable polymers and enzymes in stabilization and surface functionalization. Chem. Sci. 2(5), 837–846 (2011)Google Scholar
  32. 32.
    J. Kou, R.S. Varma, Expeditious organic-free assembly: morphologically controlled synthesis of iron oxides using microwaves. Chemsuschem 5(18), 8675–8679 (2012)Google Scholar
  33. 33.
    A. Saxena, R.M. Tripathi, F. Zafar, P. Singh, Green synthesis of silver nanoparticles using aqueous solution of Ficus benghalensis leaf extract and characterization of their antibacterial activity. Mater. Lett. 67(1), 91–94 (2012)Google Scholar
  34. 34.
    S.S. Shankar, A. Rai, A. Ahmad, M. Sastry, Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J. Colloids Interface Sci. 275(2), 496–502 (2004)Google Scholar
  35. 35.
    A.M. Awwad, N.M. Salem, Green synthesis of silver nanoparticles by mulberry leaves extract. J. Nanosci. Nanotechnol. 2(4), 125–128 (2012)Google Scholar
  36. 36.
    K.P. Kumar, W. Paul, C.P. Sharma, Green synthesis of gold nanoparticles with Zingiber officinale extract: characterization and blood compatibility. Process Biochem. 46(10), 2007–2013 (2011)Google Scholar
  37. 37.
    A.K. Mittal, Y. Chisti, U.C. Banerjee, Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv. 31(2), 346–356 (2013)Google Scholar
  38. 38.
    A.E. Nel, L. Madler, D. Velegol, T. Xia, E.M.V. Hoek, Understanding biophysicochemical interactions at the nano–bio interface. Nat. Mater. 8(7), 543 (2009)Google Scholar
  39. 39.
    R.C. Tang, Y. Zhou, Z.Y. Yang, Green and facile fabrication of AgNPs@silk for colorful and multifunctional textiles using baicalin as a natural reductant. J. Clean. Prod. 170, 940–949 (2018)Google Scholar
  40. 40.
    K.N. Thakkar, S.S. Mhatre, R.Y. Parikh, Biological synthesis of metallic nanoparticles. Nanomedicine 6(2), 257–262 (2010)Google Scholar
  41. 41.
    V.T.P. Vinod, P. Saravanan, B. Sreedhar, D.K. Devi, R.B. Sashidhar, A facile synthesis and characterization of Ag, Au and Pt nanoparticles using a natural hydrocolloid gum kondagogu (Cochlospermum gossypium). Colloids Surf. 83(2), 291–298 (2011)Google Scholar
  42. 42.
    M. Wang, D. Tian, P. Tian, L. Yuan, Synthesis of micron-SiO2@nano-Ag particles and their catalytic performance in 4-nitrophenol reduction. Appl. Surf. Sci. 283, 389–395 (2013)Google Scholar
  43. 43.
    C. Zhu, L. Han, P. Hu, S. Dong, In situ loading of well-dispersed gold nanoparticles on twodimensional graphene oxide/SiO2 composite nanosheets and their catalytic properties. Nanoscale 4(5), 1641–1646 (2012)Google Scholar
  44. 44.
    V.S. Coker, J.A. Bennett, N.D. Telling, T. Henkel, J.M. Charnock, G. van der Laan, R.A.D. Pattrick, C.I. Pearce, R.S. Cutting, I.J. Shannon, J. Wood, E. Arenholz, I.C. Lyon, J.R. Lloyd, Microbial engineering of nanoheterostructures: biological synthesis of a magnetically recoverable palladium nanocatalyst. ACS Nano 4(5), 2577–2584 (2010)Google Scholar
  45. 45.
    B. Zahed, H. Hosseini-Monfared, A comparative study of silver-graphene oxide nanocomposites as a recyclable catalyst for the aerobic oxidation of benzyl alcohol: support effect. Appl. Surf. Sci. 328, 536–547 (2015)Google Scholar
  46. 46.
    M. Zargar, A. Abdul Hamid, F. Abu Bakar, M. Nor Shamsudin, K. Shameli, F. Jahanshiri, F. Farahani, Green synthesis and antibacterial effect of silver nanoparticles using Vitex negundo L. Molecules 16(8), 6667–6676 (2011)Google Scholar
  47. 47.
    M. Atarod, M. Nasrollahzadeh, S.M. Sajadi, Euphorbia heterophylla leaf extract mediated green synthesis of Ag/TiO2 nanocomposite and investigation of its excellent catalytic activity for reduction of variety of dyes in water. J. Colloid Interface Sci. 462, 272–279 (2016)Google Scholar
  48. 48.
    H.J. Zhai, D.W. Sun, H.S. Wang, Catalytic properties of silica/silver nanocomposites. J. Nanosci. Nanotechnol. 6(7), 1968–1972 (2006)Google Scholar
  49. 49.
    A.H. Gorttapeh, M.H. Hassani, H. Ranji, Recognition and ecological investigation of almond species (Amygdalus spp.) in West Azarbaijan province. Acta Hortic. 726, 253–258 (2005)Google Scholar
  50. 50.
    S. Yada, G. Huang, K. Lapsley, Natural variability in the nutrient composition of California-grown almonds. J. Food Compos. Anal. 30(2), 80–85 (2013)Google Scholar
  51. 51.
    J.M. Martinez, J. Reguant, M.A. Montero, D. Montane, J. Salvado, X. Farriol, Hydrolytic pretreatment of softwood and almond shells. Ind. Eng. Chem. Res. 36(3), 688–696 (1997)Google Scholar
  52. 52.
    H. Pirayesh, A. Khazaeian, Using almond (Prunus amygdalus L.) shell as a bio-waste resource in wood based composite. Composites Part B. 43(3), 1475–1479 (2012)Google Scholar
  53. 53.
    P.E. Milbury, C.Y. Chen, G.G. Dolnikowski, J.B. Blumberg, Determination of flavonoids and phenolics and their distribution in almonds. J. Agric. Food Chem. 54(14), 5027–5033 (2006)Google Scholar
  54. 54.
    A.J. Isfahlan, A. Mahmoodzadeh, A. Hassanzadeh, R. Heidari, Antioxidant and antiradical activities of phenolic extracts from Iranian almond (Prunus amygdalus L.) hulls and shells. Turk. J Biol. 34(2), 165–173 (2010)Google Scholar
  55. 55.
    R. Dai, J. Chen, J. Lin, S. Xia, S. Chen, Y. Deng, Reduction of nitro phenols using nitroreductase from E. coli in the presence of NADH. J. Hazard. Mater. 170(1), 141–143 (2009)Google Scholar
  56. 56.
    B. Naik, S. Hazra, P. Muktesh, V.S. Prasad, N.N. Ghosh, A facile method for preparation of Ag nanoparticle loaded MCM-41 and study of its catalytic activity for reduction of 4-nitrophenol. Sci. Adv. Mater. 3(6), 1025–1030 (2011)Google Scholar
  57. 57.
    A. Rostami-Vartooni, M. Nasrollahzadeh, M. Alizadeh, Green synthesis of seashell supported silver nanoparticles using Bunium persicum seeds extract: application of the particles for catalytic reduction of organic dyes. J. Colloid Interface Sci. 470, 268–275 (2016)Google Scholar
  58. 58.
    H. Zhao, J.H. Kwak, Z.C. Zhang, H.M. Brown, B.W. Arey, J.E. Holladay, Studying cellulose fiber structure by SEM, XRD, NMR and acid hydrolysis. Carbohyd. Polym. 68(2), 235–241 (2007)Google Scholar
  59. 59.
    K. Das, D. Ray, N.R. Bandyopadhyay, S. Sengupta, Study of the properties of microcrystalline cellulose particles from different renewable resources by XRD, FTIR, nanoindentation, TGA and SEM. J. Polym. Environ. 18(3), 355–363 (2010)Google Scholar
  60. 60.
    R.K. Petla, S. Vivekanandhan, M. Misra, A.K. Mohanty, N. Satyanarayana, Soybean (glycine max) leaf extract based green synthesis of palladium nanoparticles. J Biomater Nanobiotechnol. 3(1), 14–19 (2011)Google Scholar
  61. 61.
    P. Abinayasri, M. Nageswari, B. Meenarathi, R. Anbarasan, Synthesis of fluorescent diblock copolymer nanoparticle supported catalyst for the reduction of Cr(VI), p-nitrophenol and rhodamine 6G dye: a comparative study. Bull. Mater. Sci. 40(3), 591–598 (2017)Google Scholar
  62. 62.
    R. Anbarasan, S. Palanikumar, A.A. Devi, P.H. Chen, K.L. Tung, Synthesis, characterization and application of superhydrophobic low-cost Cu and Al nanoparticles. Int Nano Lett. 8(2), 147–156 (2018)Google Scholar
  63. 63.
    W. Rao, H. Liu, G. Lv, D. Wang, L. Liao, Effective degradation of Rh 6G using montmorillonite-supported nano zero-valent iron under microwave treatment. Materials 11(11), 2212 (2018)Google Scholar
  64. 64.
    A. Omidvar, B. Jaleh, Preparation of the GO/Pd nanocomposite and its application for the degradation of organic dyes in water. J. Colloid Interface Sci. 496, 44–50 (2017)Google Scholar
  65. 65.
    A. Hatamifard, M. Nasrollahzadeh, J. Lipkowski, Green synthesis of a natrolite zeolite/palladium nanocomposite and its application as a reusable catalyst for the reduction of organic dyes in a very short time. RSC Adv. 5(111), 91372–91381 (2015)Google Scholar
  66. 66.
    Z. Gan, A. Zhao, M. Zhang, W. Tao, H. Guo, Q. Gao, R. Mao, E. Liu, Controlled synthesis of Au-loaded Fe3O4@C composite microspheres with superior SERS detection and catalytic degradation abilities for organic dyes. Dalton Trans. 42(24), 8597–8605 (2013)Google Scholar
  67. 67.
    S. Li, H. Li, J. Liu, H. Zhang, Y. Yang, Z. Yang, L. Wang, B. Wang, Highly efficient degradation of organic dyes by palladium nanoparticles decorated on 2D magnetic reduced graphene oxide nanosheets. Dalton Trans. 44(19), 9193–9199 (2015)Google Scholar
  68. 68.
    Y. Zhang, P. Zhu, L. Chen, G. Li, F. Zhou, D.D. Lu, R. Sun, F. Zhou, C. Wong, Hierarchical architectures of monodisperse porous Cu microspheres: synthesis, growth mechanism, high-efficiency and recyclable catalytic performance. J. Mater. Chem. A 2(30), 11966–11973 (2014)Google Scholar
  69. 69.
    X. Yang, H. Zhong, Y. Zhu, H. Jiang, J. Shen, J. Huang, C. Li, Highly efficient reusable catalyst based on silicon nanowire arrays decorated with copper nanoparticles. J. Mater. Chem. A 2(24), 9040–9047 (2014)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chemistry DepartmentShahid Bahonar University of KermanKermanIran

Personalised recommendations