Advertisement

Self-supported 3D layered zinc/nickel metal-organic-framework with enhanced performance for supercapacitors

  • Xiaolong Zhang
  • Yanwei Sui
  • Fuxiang Wei
  • Jiqiu Qi
  • Qingkun Meng
  • Yaojian Ren
  • Yezeng HeEmail author
Article
  • 43 Downloads

Abstract

Metal-organic frameworks (MOFs) have been used as a novel electrode material in terms of energy storage and conversion, owning to their stable porous architectures and exceptionally specific surface area. In this study, we have synthesized Ni-MOF and bimetallic Zn/Ni-MOF via a facile one-step hydrothermal method. Comparing with the pure Ni-MOF, the as-prepared Zn/Ni-MOF exhibits a superior energy storage capacity (878 F g−1 at 1 A g−1), better rate performance (536 F g−1 at 10 A g−1) and cycling stability (72% retention over 2500 charge/discharge cycles). In addition, the assembled asymmetric supercapacitor based on the Zn/Ni-MOF-1/NF//RGO shows a remarkable supercapacitive performance with the energy density of 30.51 Wh kg−1 at the power density of 800 W kg−1, and a superior cycling stability of 80.3% retention over 5000 cycles.

Notes

Acknowledgements

The authors would like to acknowledge the support by the Fundamental Research Funds for the Central Universities (No. 2019XKQYMS01).

References

  1. 1.
    Y.Z. Zhang, T. Cheng, Y. Wang, W.Y. Lai, H. Pang, W. Huang, A simple approach to boost capacitance: flexible supercapacitors based on manganese Oxides@MOFs via chemically induced in situ self-transformation. Adv. Mater. 28, 5242–5248 (2016)CrossRefGoogle Scholar
  2. 2.
    Y. Jiao, J. Pei, C.S. Yan, D.H. Chen, Y.Y. Hu, G. Chen, Layered nickel metal-organic framework for high performance alkaline battery-supercapacitor hybrid devices. J. Mater. Chem. A 4, 13344–13351 (2016)CrossRefGoogle Scholar
  3. 3.
    Y. Jiao, W.Z. Hong, P.Y. Li, L.X. Wang, G. Chen, Metal-organic framework derived Ni/NiO micro-particles with subtle lattice distortions for high-performance electrocatalyst and supercapacitor. Appl. Catal. B Environ. 244, 732–739 (2019)CrossRefGoogle Scholar
  4. 4.
    A. Subasri, K. Balakrishnan, E.R. Nagarajan, V. Devadoss, A. Subramania, Development of 2D La(OH)(3)/graphene nanohybrid by a facile solvothermal reduction process for high-performance supercapacitors. Electrochim. Acta 281, 329–337 (2018)CrossRefGoogle Scholar
  5. 5.
    B. Kirubasankar, P. Palanisamy, S. Arunachalam, V. Murugadoss, S. Angaiah, 2D MoSe2-Ni(OH)(2) nanohybrid as an efficient electrode material with high rate capability for asymmetric supercapacitor applications. Chem. Eng. J. 355, 881–890 (2019)CrossRefGoogle Scholar
  6. 6.
    K. Singh, B. Kirubasankar, S. Angaiah, Synthesis and electrochemical performance of P2-Na0.67AlxCo1−xO2 (0.0 ≤ x ≤ 0.5) nanopowders for sodium-ion capacitors. Ionics 23, 731–739 (2017)CrossRefGoogle Scholar
  7. 7.
    S. Vijayan, B. Kirubasankar, P. Pazhamalai, A.K. Solarajan, S. Angaiah, Electrospun Nd3+-doped LiMn2O4 nanofibers as high-performance cathode material for Li-ion capacitors. ChemElectroChem 4, 2059–2067 (2017)CrossRefGoogle Scholar
  8. 8.
    S.-L. Jian, L.-Y. Hsiao, M.-H. Yeh, K.-C. Ho, Designing a carbon nanotubes-interconnected ZIF-derived cobalt sulfide hybrid nanocage for supercapacitors. J. Mater. Chem. A 7, 1479–1490 (2019)CrossRefGoogle Scholar
  9. 9.
    W. Sun, Y. Du, G. Wu, G. Gao, H. Zhu, J. Shen, K. Zhang, G. Cao, Constructing metallic zinc–cobalt sulfide hierarchical core–shell nanosheet arrays derived from 2D metal–organic-frameworks for flexible asymmetric supercapacitors with ultrahigh specific capacitance and performance. J. Mater. Chem. A 7, 7138–7150 (2019)CrossRefGoogle Scholar
  10. 10.
    S. Arunachalam, B. Kirubasankar, V. Murugadoss, D. Vellasamy, S. Angaiah, Facile synthesis of electrostatically anchored Nd(OH)(3) nanorods onto graphene nanosheets as a high capacitance electrode material for supercapacitors. New J. Chem. 42, 2923–2932 (2018)CrossRefGoogle Scholar
  11. 11.
    S. Arunachalam, B. Kirubasankar, E.R. Nagarajan, D. Vellasamy, S. Angaiah, A facile chemical precipitation method for the synthesis of Nd(OH)(3) and La(OH)(3) nanopowders and their supercapacitor performances. ChemistrySelect 3, 12719–12724 (2018)CrossRefGoogle Scholar
  12. 12.
    W. Bai, S. Li, J. Ma, W. Cao, J. Zheng, Ultrathin 2D metal–organic framework (nanosheets and nanofilms)-based xD–2D hybrid nanostructures as biomimetic enzymes and supercapacitors. J. Mater. Chem. A 7, 9086–9098 (2019)CrossRefGoogle Scholar
  13. 13.
    B. Kirubasankar, V. Murugadoss, S. Angaiah, Hydrothermal assisted in situ growth of CoSe onto graphene nanosheets as a nanohybrid positive electrode for asymmetric supercapacitors. RSC Adv. 7, 5853–5862 (2017)CrossRefGoogle Scholar
  14. 14.
    B. Kirubasankar, V. Murugadoss, J. Lin, T. Ding, M.Y. Dong, H. Liu, J.X. Zhang, T.X. Li, N. Wang, Z.H. Guo, S. Angaiah, In situ grown nickel selenide on graphene nanohybrid electrodes for high energy density asymmetric supercapacitors. Nanoscale 10, 20414–20425 (2018)CrossRefGoogle Scholar
  15. 15.
    B. Kirubasankar, S. Vijayan, S. Angaiah, Sonochemical synthesis of a 2D-2D MoSe2/graphene nanohybrid electrode material for asymmetric supercapacitors. Sustain. Energ. Fuels 3, 467–477 (2019)CrossRefGoogle Scholar
  16. 16.
    X. Peng, L.L. Peng, C.Z. Wu, Y. Xie, Two dimensional nanomaterials for flexible supercapacitors. Chem. Soc. Rev. 43, 3303–3323 (2014)CrossRefGoogle Scholar
  17. 17.
    J. Yan, Q. Wang, T. Wei, Z.J. Fan, Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv. Energy Mater. 4, 43 (2014)Google Scholar
  18. 18.
    R.R. Salunkhe, Y. Kamachi, N.L. Torad, S.M. Hwang, Z.Q. Sun, S.X. Dou, J.H. Kim, Y. Yamauchi, Fabrication of symmetric supercapacitors based on MOF-derived nanoporous carbons. J. Mater. Chem. A 2, 19848–19854 (2014)CrossRefGoogle Scholar
  19. 19.
    B. Liu, H. Shioyama, H.L. Jiang, X.B. Zhang, Q. Xu, Metal-organic framework (MOF) as a template for syntheses of nanoporous carbons as electrode materials for supercapacitor. Carbon 48, 456–463 (2010)CrossRefGoogle Scholar
  20. 20.
    J. Xu, Y.Y. Li, L. Wang, Q.F. Cai, Q.W. Li, B. Gao, X.M. Zhang, K.F. Huo, P.K. Chu, High-energy lithium-ion hybrid supercapacitors composed of hierarchical urchin-like WO3/C anodes and MOF-derived polyhedral hollow carbon cathodes. Nanoscale 8, 16761–16768 (2016)CrossRefGoogle Scholar
  21. 21.
    J.A. Carrasco, J. Romero, G. Abellan, J. Hernandez-Saz, S.I. Molina, C. Marti-Gastaldo, E. Coronado, Small-pore driven high capacitance in a hierarchical carbon via carbonization of Ni-MOF-74 at low temperatures. Chem. Commun. 52, 9141–9144 (2016)CrossRefGoogle Scholar
  22. 22.
    S.N. Liu, J. Zhou, Z.Y. Cai, G.Z. Fang, Y.S. Cai, A.Q. Pan, S.Q. Liang, Nb2O5 quantum dots embedded in MOF derived nitrogen-doped porous carbon for advanced hybrid supercapacitor applications. J. Mater. Chem. A 4, 17838–17847 (2016)CrossRefGoogle Scholar
  23. 23.
    M.Y. Yao, X. Zhao, L. Jin, F.Y. Zhao, J.X. Zhang, J. Dong, Q.H. Zhang, High energy density asymmetric supercapacitors based on MOF-derived nanoporous carbon/manganese dioxide hybrids. Chem. Eng. J. 322, 582–589 (2017)CrossRefGoogle Scholar
  24. 24.
    X. Xu, W. Shi, W. Liu, S. Ye, R. Yin, L. Zhang, L. Xu, M. Chen, M. Zhong, X. Cao, Preparation of two-dimensional assembled Ni–Mn–C ternary composites for high-performance all-solid-state flexible supercapacitors. J. Mater. Chem. A 6, 24086–24091 (2018)CrossRefGoogle Scholar
  25. 25.
    J. Yang, P.X. Xiong, C. Zheng, H.Y. Qiu, M.D. Wei, Metal-organic frameworks: a new promising class of materials for a high performance supercapacitor electrode. J. Mater. Chem. A 2, 16640–16644 (2014)CrossRefGoogle Scholar
  26. 26.
    L. Yue, H. Guo, X. Wang, T. Sun, H. Liu, Q. Li, M. Xu, Y. Yang, W. Yang, Non-metallic element modified metal-organic frameworks as high-performance electrodes for all-solid-state asymmetric supercapacitors. J. Colloid Interface Sci. 539, 370–378 (2019)CrossRefGoogle Scholar
  27. 27.
    Z.X. Cai, Z.L. Wang, J. Kim, Y. Yamauchi, Hollow functional materials derived from metal-organic frameworks: synthetic strategies. Convers. Mech. Electrochem. Appl. Adv. Mater. 31, e1804903 (2019)Google Scholar
  28. 28.
    S.W. Gao, Y.W. Sui, F.X. Wei, J.Q. Qi, Q.K. Meng, Y.J. Ren, Y.Z. He, Hydrothermal synthesis of Ni-MOF vulcanized derivatives for high-performance supercapacitors. NANO 14, 12 (2019)Google Scholar
  29. 29.
    X. Zhang, W. Sun, H. Du, R.-M. Kong, F. Qu, A Co-MOF nanosheet array as a high-performance electrocatalyst for the oxygen evolution reaction in alkaline electrolytes. Inorg. Chem. Front. 5, 344–347 (2018)CrossRefGoogle Scholar
  30. 30.
    H.C. Xia, J.N. Zhang, Z. Yang, S.Y. Guo, S.H. Guo, Q. Xu, 2D MOF nanoflake-assembled spherical microstructures for enhanced supercapacitor and electrocatalysis performances. Nano Micro Lett. 9, 43 (2017)CrossRefGoogle Scholar
  31. 31.
    S. Gao, Y. Sui, F. Wei, J. Qi, Q. Meng, Y. Ren, Y. He, Dandelion-like nickel/cobalt metal-organic framework based electrode materials for high performance supercapacitors. J. Colloid Interface Sci. 531, 83–90 (2018)CrossRefGoogle Scholar
  32. 32.
    G. Lee, W. Na, J. Kim, S. Lee, J. Jang, Improved electrochemical performances of MOF-derived Ni–Co layered double hydroxide complexes using distinctive hollow-in-hollow structures. J. Mater. Chem. A 7, 17637–17647 (2019)CrossRefGoogle Scholar
  33. 33.
    C. Qu, Y. Jiao, B.T. Zhao, D.C. Chen, R.Q. Zou, K.S. Walton, M.L. Liu, Nickel-based pillared MOFs for high-performance supercapacitors: design, synthesis and stability study. Nano Energy 26, 66–73 (2016)CrossRefGoogle Scholar
  34. 34.
    D.R. Sun, F.X. Sun, X.Y. Deng, Z.H. Li, Mixed-metal strategy on metal-organic frameworks (MOFs) for functionalities expansion: co substitution induces aerobic oxidation of cyclohexene over inactive Ni-MOF-74. Inorg. Chem. 54, 8639–8643 (2015)CrossRefGoogle Scholar
  35. 35.
    C.K. Brozek, M. Dinca, Ti3+-, V2+/3+-, Cr2+/3+-, Mn2+-, and Fe2+-Substituted MOF-5 and Redox Reactivity in Cr- and Fe-MOF-5. J. Am. Chem. Soc. 135, 12886–12891 (2013)CrossRefGoogle Scholar
  36. 36.
    L. Arun, C. Karthikeyan, D. Philip, M. Sasikumar, E. Elanthamilan, J.P. Merlin, C. Unni, Effect of Ni2+ doping on chemocatalytic and supercapacitor performance of biosynthesized nanostructured CuO. J. Mater. Sci.: Mater. Electron. 29, 21180–21193 (2018)Google Scholar
  37. 37.
    C. Karthikeyan, L. Arun, A.S.H. Hameed, K. Gopinath, L. Umaralikahan, G. Vijayaprasath, P. Malathi, Structural, optical, thermal and magnetic properties of nickel calcium and nickel iron co-doped ZnO nanoparticles. J. Mater. Sci.: Mater. Electron. 30, 8097–8104 (2019)Google Scholar
  38. 38.
    E. Elanthamilan, A. Sathiyan, S. Rajkumar, E.J. Sheryl, J.P. Merlin, Polyaniline based charcoal/Ni nanocomposite material for high performance supercapacitors. Sustain. Energy Fuels 2, 811–819 (2018)CrossRefGoogle Scholar
  39. 39.
    C.Z. Yuan, H.B. Wu, Y. Xie, X.W. Lou, Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew. Chem. Int. Ed. 53, 1488–1504 (2014)CrossRefGoogle Scholar
  40. 40.
    Y. Zhao, X.F. Li, B. Yan, D.B. Xiong, D.J. Li, S. Lawes, X.L. Sun, Recent developments and understanding of novel mixed transition-metal oxides as anodes in lithium ion batteries. Adv. Energy Mater. 6, 19 (2016)Google Scholar
  41. 41.
    H. Mei, Y.J. Mei, S.Y. Zhang, Z.Y. Xiao, B. Xu, H.B. Zhang, L.L. Fan, Z.D. Huang, W.P. Kang, D.F. Sun, Bimetallic-MOF derived accordion-like ternary composite for high-performance supercapacitors. Inorg. Chem. 57, 10953–10960 (2018)CrossRefGoogle Scholar
  42. 42.
    S.N. Xiao, D.L. Pan, R. Liang, W.R. Dai, Q.T. Zhang, G.Q. Zhang, C.L. Su, H.X. Li, W. Chen, Bimetal MOF derived mesocrystal ZnCo2O4 on rGO with High performance in visible-light photocatalytic NO oxidization. Appl. Catal. B Environ. 236, 304–313 (2018)CrossRefGoogle Scholar
  43. 43.
    P. Simon, Y. Gogotsi, B. Dunn, Where do batteries end and supercapacitors begin? Science 343, 1210–1211 (2014)CrossRefGoogle Scholar
  44. 44.
    Y.R. Zhu, X.B. Ji, Z.P. Wu, W.X. Song, H.S. Hou, Z.B. Wu, X. He, Q.Y. Chen, C.E. Banks, Spinel NiCo2O4 for use as a high-performance supercapacitor electrode material: understanding of its electrochemical properties. J. Power Sources 267, 888–900 (2014)CrossRefGoogle Scholar
  45. 45.
    D.M. Zhang, X.B. Zhou, K. Ye, Y.J. Li, C.Y. Song, K. Cheng, D.X. Cao, G.L. Wang, Q. Li, Synthesis of honeycomb-like NiS2/NiO nano-multiple materials for high performance supercapacitors. Electrochim. Acta 173, 209–214 (2015)CrossRefGoogle Scholar
  46. 46.
    W. Zhao, J. Peng, W. Wang, B. Jin, T. Chen, S. Liu, Q. Zhao, W. Huang, Interlayer hydrogen-bonded metal porphyrin frameworks/MXene hybrid film with high capacitance for flexible all-solid-state supercapacitors. Small 15, e1901351 (2019)CrossRefGoogle Scholar
  47. 47.
    R.R. Salunkhe, B.P. Bastakoti, C.T. Hsu, N. Suzuki, J.H. Kim, S.X. Dou, C.C. Hu, Y. Yamauchi, Direct growth of cobalt hydroxide rods on nickel foam and its application for energy storage. Chem. Eur. J. 20, 3084–3088 (2014)CrossRefGoogle Scholar
  48. 48.
    L. Kang, S.X. Sun, L.B. Kong, J.W. Lang, Y.C. Luo, Investigating metal-organic framework as a new pseudo-capacitive material for supercapacitors. Chin. Chem. Lett. 25, 957–961 (2014)CrossRefGoogle Scholar
  49. 49.
    G.F. Li, Y. Cong, C.X. Zhang, H.J. Tao, Y.M. Sun, Y.Q. Wang, Hierarchical nanosheet-based Ni3S2 microspheres grown on Ni foam for highperformance all-solid-state asymmetric supercapacitors. Nanotechnology 28, 7 (2017)Google Scholar
  50. 50.
    A.K. Das, R. Bera, A. Maitra, S.K. Karan, S. Paria, L. Halder, S.K. Si, A. Bera, B.B. Khatua, Fabrication of an advanced asymmetric supercapacitor based on a microcubical PB@MnO2 hybrid and PANI/GNP composite with excellent electrochemical behaviour. J. Mater. Chem. A 5, 22242–22254 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringChina University of Mining and TechnologyXuzhouPeople’s Republic of China
  2. 2.The Jiangsu Province Engineering Laboratory of High Efficient Energy Storage Technology and EquipmentXuzhouPeople’s Republic of China

Personalised recommendations