Advertisement

Self-enhanced electrochemical properties of Ni–P nanosphere with heterogeneous Ni and Ni–P nanoflake outer layer anchored on carbon cloth for asymmetric all-solid-state supercapacitors

  • Jingzhou Ling
  • Hanbo ZouEmail author
  • Wei Yang
  • Kangzhou Lei
  • Shengzhou ChenEmail author
Article
  • 13 Downloads

Abstract

To meet the demand for high-power-density and long lifespan surpercapacitors (SCs), the Ni–P@Ni HL/CC-1h with a core–shell structure (Ni–P sphere as the core and nanoflake with the Ni and Ni–P heterogeneous layer as shell) was constructed via a facile strategy. The strategy included hydrothermal synthesis of Ni–P spheres with large Ni surface layer on carbon cloth (Ni–P@Ni HL/CC) and subsequent chemical dealloying using HCl as etching solution in order to remove the redundant Ni substances. The morphology, composition, and electrochemical performances of raw Ni–P@Ni HL/CC and the corresponding samples obtained by different dealloying times (0.5, 1, and 2 h) were characterized. Interestingly, the Ni–P@Ni HL/CC-1h presents a unique structure with a nanoflake shell and a porous core, which can provide a large number of exposed active sites, accelerate electrolyte ion diffusion and support ultra-long cycling. Furthermore, the Ni species existing in the outer flake can increase the conductivity and promote the capacitance during the charge–discharge processes. The Ni–P@Ni HL/CC-1h exhibited high specific capacity of 280.8 C g−1 at current density of 1 mA cm−2, high rate retention of 76.2% at 20 mA cm−2. The maximum specific capacity could reach 388.8 C g−1 at 8 mA cm−2, and maintained the 92.6% retention after 3000 cycles. Moreover, the Ni–P@Ni HL/CC-1h//AC all-solid-state asymmetric supercapacitor (ASC) exhibited high specific capacity, 86.0% retention after 10,000 cycles and high energy density of 27.6 Wh kg−1 at power density of 942.8 W kg−1.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China [Grant No. 21776051], the Guangzhou Education Bureau [Grant Nos. 1201541563], Department of Science and Technology of Guangdong Province [Grant Nos. 2017B090917002, 201802020029], the Natural Science Foundation of Guangdong (Grant No. 2018A030313423), Guangdong undergraduate innovation experiment project.

Supplementary material

10854_2019_2162_MOESM1_ESM.docx (6.4 mb)
Supplementary material 1 (DOCX 6562 kb)

References

  1. 1.
    Y. Chen, B. Xu, J. Wen et al., Small 14, e1704373 (2018).  https://doi.org/10.1002/smll.201704373 CrossRefGoogle Scholar
  2. 2.
    J. Xu, Y. Sun, M. Lu et al., Chem. Eng. J. 334, 1466 (2018).  https://doi.org/10.1016/j.cej.2017.11.085 CrossRefGoogle Scholar
  3. 3.
    J. Huang, J. Wei, Y. Xiao et al., ACS Nano 12, 3030 (2018).  https://doi.org/10.1021/acsnano.8b00901 CrossRefGoogle Scholar
  4. 4.
    S. Xie, J. Gou, J. Alloys Compd. 713, 10 (2017).  https://doi.org/10.1016/j.jallcom.2017.04.170 CrossRefGoogle Scholar
  5. 5.
    D. Wang, L.-B. Kong, M.-C. Liu, W.-B. Zhang, Y.-C. Luo, L. Kang, J. Power Sources 274, 1107 (2015).  https://doi.org/10.1016/j.jpowsour.2014.10.179 CrossRefGoogle Scholar
  6. 6.
    T.T. Nguyen, J. Balamurugan, N.H. Kim, J.H. Lee, J. Mater. Chem. A 6, 8669 (2018).  https://doi.org/10.1039/c8ta01184b CrossRefGoogle Scholar
  7. 7.
    D.H. Shin, J.S. Lee, J. Jun, J. Jang, J. Mater. Chem. A 2, 3364 (2014).  https://doi.org/10.1039/c3ta14900e CrossRefGoogle Scholar
  8. 8.
    H. Liang, C. Xia, Q. Jiang, A.N. Gandi, U. Schwingenschlögl, H.N. Alshareef, Nano Energy 35, 331 (2017).  https://doi.org/10.1016/j.nanoen.2017.04.007 CrossRefGoogle Scholar
  9. 9.
    J. Ling, H. Zou, W. Yang, W. Chen, K. Lei, S. Chen, J. Energy Storage 20, 92 (2018).  https://doi.org/10.1016/j.est.2018.09.007 CrossRefGoogle Scholar
  10. 10.
    X. Cao, D. Jia, D. Li, L. Cui, J. Liu, Chem. Eng. J. 348, 310 (2018).  https://doi.org/10.1016/j.cej.2018.04.209 CrossRefGoogle Scholar
  11. 11.
    B. Che, H. Li, D. Zhou et al., Composites B 165, 671 (2019).  https://doi.org/10.1016/j.compositesb.2019.02.026 CrossRefGoogle Scholar
  12. 12.
    A.M. Abioye, F.N. Ani, Renew. Sustain. Energy Rev. 52, 1282 (2015).  https://doi.org/10.1016/j.rser.2015.07.129 CrossRefGoogle Scholar
  13. 13.
    M.R. Lukatskaya, S. Kota, Z. Lin et al., Nat. Energy 2, 17105 (2017).  https://doi.org/10.1038/nenergy.2017.105 CrossRefGoogle Scholar
  14. 14.
    W. Yuan, L. Cheng, H. Wu, Y. Zhang, S. Lv, X. Guo, Chem. Commun. 54, 2755 (2018).  https://doi.org/10.1039/c7cc09017j CrossRefGoogle Scholar
  15. 15.
    N. Wang, P. Zhao, Q. Zhang, M. Yao, W. Hu, Composites B 113, 144 (2017).  https://doi.org/10.1016/j.compositesb.2017.01.041 CrossRefGoogle Scholar
  16. 16.
    S. Liu, K.V. Sankar, A. Kundu, M. Ma, J.Y. Kwon, S.C. Jun, ACS Appl. Mater. Interfaces. 9, 21829 (2017).  https://doi.org/10.1021/acsami.7b05384 CrossRefGoogle Scholar
  17. 17.
    L. Shen, L. Yu, H.B. Wu, X.Y. Yu, X. Zhang, X.W. Lou, Nat. Commun. 6, 6694 (2015).  https://doi.org/10.1038/ncomms7694 CrossRefGoogle Scholar
  18. 18.
    B. Kirubasankar, V. Murugadoss, J. Lin et al., Nanoscale 10, 20414 (2018).  https://doi.org/10.1039/c8nr06345a CrossRefGoogle Scholar
  19. 19.
    B. Li, M. Zheng, H. Xue, H. Pang, Inorg. Chem. Front. 3, 175 (2016).  https://doi.org/10.1039/c5qi00187k CrossRefGoogle Scholar
  20. 20.
    R.R. Salunkhe, J. Tang, N. Kobayashi et al., Chem. Sci. 7, 5704 (2016).  https://doi.org/10.1039/c6sc01429a CrossRefGoogle Scholar
  21. 21.
    H. Yi, H. Wang, Y. Jing, T. Peng, X. Wang, J. Power Sources 285, 281 (2015).  https://doi.org/10.1016/j.jpowsour.2015.03.106 CrossRefGoogle Scholar
  22. 22.
    X. Wang, H. Zhou, D. Zhang, M. Pi, J. Feng, S. Chen, J. Power Sources 387, 1 (2018).  https://doi.org/10.1016/j.jpowsour.2018.03.053 CrossRefGoogle Scholar
  23. 23.
    J.S. Shayeh, A. Ehsani, M.R. Ganjali, P. Norouzi, B. Jaleh, Appl. Surf. Sci. 353, 594–599 (2015).  https://doi.org/10.1016/j.apsusc.2015.06.066 CrossRefGoogle Scholar
  24. 24.
    G. Li, H. Yang, F. Li, J. Du, W. Shi, P. Cheng, J. Mater. Chem. A 4, 9593 (2016).  https://doi.org/10.1039/c6ta02059c CrossRefGoogle Scholar
  25. 25.
    P. Lou, Z. Cui, Z. Jia, J. Sun, Y. Tan, X. Guo, ACS Nano 11, 3705 (2017).  https://doi.org/10.1021/acsnano.6b08223 CrossRefGoogle Scholar
  26. 26.
    J. Hu, P. Wang, P. Liu et al., Electrochim. Acta 220, 258 (2016).  https://doi.org/10.1016/j.electacta.2016.10.052 CrossRefGoogle Scholar
  27. 27.
    Y. Lu, J-k Liu, X-y Liu et al., CrystEngComm 15, 7071 (2013).  https://doi.org/10.1039/c3ce41214h CrossRefGoogle Scholar
  28. 28.
    Y. Jin, C. Zhao, Q. Jiang, C. Ji, Mater. Chem. Phys. 214, 89 (2018).  https://doi.org/10.1016/j.matchemphys.2018.04.086 CrossRefGoogle Scholar
  29. 29.
    X. Wang, W. Li, D. Xiong, D.Y. Petrovykh, L. Liu, Adv. Funct. Mater. 26, 4067 (2016).  https://doi.org/10.1002/adfm.201505509 CrossRefGoogle Scholar
  30. 30.
    X. Wang, W. Li, D. Xiong, L. Liu, J. Mater. Chem. A 4, 5639 (2016).  https://doi.org/10.1039/c5ta10317g CrossRefGoogle Scholar
  31. 31.
    A. Bahramian, M. Eyraud, F. Vacandio, P. Knauth, Surf. Coat. Technol. 345, 40 (2018).  https://doi.org/10.1016/j.surfcoat.2018.03.075 CrossRefGoogle Scholar
  32. 32.
    D. Wang, L.B. Kong, M.C. Liu, Y.C. Luo, L. Kang, Chemistry 21, 17897 (2015).  https://doi.org/10.1002/chem.201502269 CrossRefGoogle Scholar
  33. 33.
    L. Jin, H. Xia, Z. Huang et al., J. Mater. Chem. A 4, 10925 (2016).  https://doi.org/10.1039/c6ta03028a CrossRefGoogle Scholar
  34. 34.
    S. Liu, J. Feng, X. Bian, J. Liu, H. Xu, Y. An, Energy Environ. Sci. 10, 1222 (2017).  https://doi.org/10.1039/c7ee00102a CrossRefGoogle Scholar
  35. 35.
    M.-S. Balogun, W. Qiu, H. Yang et al., Energy Environ. Sci. 9, 3411 (2016).  https://doi.org/10.1039/c6ee01930g CrossRefGoogle Scholar
  36. 36.
    S. Liu, X. Bian, J. Liu et al., Surf. Eng. 31, 420 (2015).  https://doi.org/10.1179/1743294414Y.0000000445 CrossRefGoogle Scholar
  37. 37.
    S. Liu, J. Feng, X. Bian, J. Liu, H. Xu, RSC Adv. 5, 60870 (2015).  https://doi.org/10.1039/c5ra08926c CrossRefGoogle Scholar
  38. 38.
    Y.Y. Tong, C.D. Gu, J.L. Zhang, H. Tang, X.L. Wang, J.P. Tu, Int. J. Hydrog. Energy 41, 6342 (2016).  https://doi.org/10.1016/j.ijhydene.2016.03.018 CrossRefGoogle Scholar
  39. 39.
    Y. Shao, Y. Zhao, H. Li, C. Xu, ACS Appl. Mater. Interfaces. 8, 35368 (2016).  https://doi.org/10.1021/acsami.6b12881 CrossRefGoogle Scholar
  40. 40.
    C. Lin, Z. Gao, J. Yang, B. Liu, J. Jin, J. Mater. Chem. A 6, 6387 (2018).  https://doi.org/10.1039/c8ta00260f CrossRefGoogle Scholar
  41. 41.
    Z. Huang, C. Lv, Z. Chen, Z. Chen, F. Tian, C. Zhang, Nano Energy 12, 666 (2015).  https://doi.org/10.1016/j.nanoen.2015.01.027 CrossRefGoogle Scholar
  42. 42.
    Y.-J. Yim, K.Y. Rhee, S.-J. Park, Composites B 98, 120 (2016).  https://doi.org/10.1016/j.compositesb.2016.04.061 CrossRefGoogle Scholar
  43. 43.
    T. Brousse, D. Bélanger, J.W. Long, J. Electrochem. Soc. 162, A5185 (2015).  https://doi.org/10.1149/2.0201505jes CrossRefGoogle Scholar
  44. 44.
    P. Simon, Y. Gogotsi, B. Dunn, Science 343, 1210 (2014).  https://doi.org/10.1126/science.1249625 CrossRefGoogle Scholar
  45. 45.
    A.M. Abioye, Z.A. Noorden, F.N. Ani, Electrochim. Acta 225, 493 (2017).  https://doi.org/10.1016/j.electacta.2016.12.101 CrossRefGoogle Scholar
  46. 46.
    X. Li, R. Ding, L. Yi, W. Shi, Q. Xu, E. Liu, Electrochim. Acta 222, 1169 (2016).  https://doi.org/10.1016/j.electacta.2016.11.089 CrossRefGoogle Scholar
  47. 47.
    Y. Jiang, Z. Li, B. Li, J. Zhang, C. Niu, J. Power Sources 320, 13 (2016).  https://doi.org/10.1016/j.jpowsour.2016.04.077 CrossRefGoogle Scholar
  48. 48.
    Z. Li, X. Yu, A. Gu, H. Tang, L. Wang, Z. Lou, Nanotechnology 28, 065406 (2017).  https://doi.org/10.1088/1361-6528/28/6/065406 CrossRefGoogle Scholar
  49. 49.
    R. Ding, L. Qi, M. Jia, H. Wang, Electrochim. Acta 107, 494 (2013).  https://doi.org/10.1016/j.electacta.2013.05.114 CrossRefGoogle Scholar
  50. 50.
    W. Xu, B. Mu, A. Wang, Electrochim. Acta 194, 84 (2016).  https://doi.org/10.1016/j.electacta.2016.02.072 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringGuangzhou UniversityGuangzhouChina
  2. 2.Guangzhou Key Laboratory for New Energy and Green CatalysisGuangzhou UniversityGuangzhouChina

Personalised recommendations