Advertisement

Fast and low-temperature sintering of Ag paste due to nanoparticles formed in situ

  • Jeyun Yeom
  • Hao Zhang
  • Cai-Fu LiEmail author
  • Katsuaki Suganuma
Article
  • 49 Downloads

Abstract

Sintering of silver is a popular method for forming interconnections in power electronics. Owing to their large size and spherical shape, micron- and submicron-sized Ag particles synthesized by a polyol method (denoted as polyol Ag particles) are not expected to undergo low-temperature, pressureless sintering. However, previous studies have shown sound bonding with shear strength of more than 40 MPa at 200 °C with micron and submicron polyol Ag particles. In this work, to understand the bonding mechanism of polyol Ag particles, the sintering behaviors of two Ag pastes, one with polyol Ag particles and another based on hybrid Ag particles consisting of micron-sized Ag flakes and submicron-sized Ag particles, were investigated without any applied pressure at 175 °C via transmission electron microscopy. During the sintering process, Ag nanoparticles formed in situ can significantly accelerate the sintering of the Ag paste, resulting in low electrical resistivity of the sintered Ag paste (9.8 × 10−6 Ω·cm) after only 5 min of sintering at 175 °C. The Ag nanoparticles were likely generated from the reduction of residual Ag ions or the Ag complex in the paste. The results were also verified by washing the Ag particles or adding Ag ions into the paste.

Notes

Acknowledgements

The authors wish to thank Dr. J. Jiu (Senju Metal Industry, Co., Ltd.) for her instruction on polyol method and the members of the Comprehensive Analysis Center, ISIR, Osaka University for their help in XPS, ICP–AES, and TEM measurements. This work was partly supported both by JST ALCA Grant Number JPMJAL1610 Japan, and by “Dynamic Alliance for Open Innovation Bridging Human, Environment and Materials” from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Compliance with ethical standards

Conflict of interest

There are no conflicts to declare.

References

  1. 1.
    K. Suganuma, S. Sakamoto, N. Kagami, D. Wakuda, K.S. Kim, M. Nogi, Microelectron. Reliab. 52, 375 (2012)CrossRefGoogle Scholar
  2. 2.
    S. Magdassi, M. Grouchko, O. Berezin, A. Kamyshny, ACS Nano 4, 1943 (2010)CrossRefGoogle Scholar
  3. 3.
    H. Schwarzbauer, R. Kuhnert, IEEE Trans. Ind. Appl. 27, 93–95 (1991)CrossRefGoogle Scholar
  4. 4.
    K.S. Siow, J. Alloys Compd. 514, 6 (2012)CrossRefGoogle Scholar
  5. 5.
    H. Zhang, Y. Gao, J. Jiu, K. Suganuma, J. Alloys Compd. 696, 123 (2017)CrossRefGoogle Scholar
  6. 6.
    D. Wakuda, K.S. Kim, K. Suganuma, Scr. Mater. 59, 649 (2008)CrossRefGoogle Scholar
  7. 7.
    D. Wakuda, K.S. Kim, K. Suganuma, I.E.E.E. Trans, Components Packag. Technol. 33, 437 (2010)CrossRefGoogle Scholar
  8. 8.
    M.A. Asoro, D. Kovar, P.J. Ferreira, Chem. Commun. 50, 4835 (2014)CrossRefGoogle Scholar
  9. 9.
    S. Soichi, K. Suganuma, I.E.E.E. Trans, Components Packag. Manuf. Technol. 3, 923 (2013)CrossRefGoogle Scholar
  10. 10.
    J. Jiu, H. Zhang, S. Koga, S. Nagao, Y. Izumi, K. Suganuma, J. Mater. Sci. 26, 7183 (2015)Google Scholar
  11. 11.
    Y. Suzuki, T. Ogura, M. Takahashi, A. Hirose, Mater. Charact. 98, 186 (2014)CrossRefGoogle Scholar
  12. 12.
    A.I. Boronin, V.I. Bukhityarov, A.L. Vishnevskii, G.K. Boreskov, V.I. Savchenko, Surf. Sci. 201, 195 (1988)CrossRefGoogle Scholar
  13. 13.
    V.I. Bukhtiyarov, V.V. Kaichev, I.P. Prosvirin, J. Chem. Phys. 111, 2169 (2005)CrossRefGoogle Scholar
  14. 14.
    Q. Xu, P. Pu, J. Zhao, C. Dong, C. Gao, Y. Chen, J. Mater. Chem. A 3, 542 (2015)CrossRefGoogle Scholar
  15. 15.
    L. Fan, S. Qiao, W. Song, M. Wu, X. He, X. Qu, Electrochim. Acta 105, 299 (2013)CrossRefGoogle Scholar
  16. 16.
    T. Zhao, R. Sun, S. Yu, Z. Zhang, L. Zhou, H. Huang, R. Du, Colloids Surf A 366, 197 (2010)CrossRefGoogle Scholar
  17. 17.
    J.F. Weaver, G.B. Hoflund, Chem. Mater. 6, 1693 (1994)CrossRefGoogle Scholar
  18. 18.
    R.D. Glover, J.M. Miller, J.E. Hutchison, ACS Nano 5, 8950 (2011)CrossRefGoogle Scholar
  19. 19.
    N. Matsuhisa, D. Inoue, P. Zalar, H. Jin, Y. Matsuba, A. Itoh, T. Yokota, D. Hashizume, T. Someya, Nat. Mater. 16, 834 (2017)CrossRefGoogle Scholar
  20. 20.
    P. Tavlarakis, J. Urban, N. Snow, J. Chromatogr. Sci. 49, 457 (2014)CrossRefGoogle Scholar
  21. 21.
    J. Jiu, K. Murai, K. Kim, K. Suganuma, J. Mater. Sci. 21, 713 (2010)Google Scholar
  22. 22.
    Z. Zhang, B. Zhao, L. Hu, J. Solid State Chem. 110, 105 (1996)CrossRefGoogle Scholar
  23. 23.
    J.J. Zhu, C.X. Kan, J.G. Wan, M. Han, G.H. Wang, J. Nanomater. 2011, 982547 (2011)CrossRefGoogle Scholar
  24. 24.
    C. Kan, C. Wang, J. Zhu, H. Li, J. Solid State Chem. 183, 858 (2010)CrossRefGoogle Scholar
  25. 25.
    S. Sakamoto, S. Nagao, K. Suganuma, J. Mater. Sci. 24, 2593 (2013)Google Scholar
  26. 26.
    K. Moon, H.A.I. Dong, R. Maric, S. Pothukuchi, A. Hunt, Y.I. Li, J. Electron. Mater. 34, 168 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jeyun Yeom
    • 1
    • 2
  • Hao Zhang
    • 2
  • Cai-Fu Li
    • 2
    Email author
  • Katsuaki Suganuma
    • 2
  1. 1.Department of Adaptive Machine Systems, Graduate School of EngineeringOsaka UniversitySuitaJapan
  2. 2.The Institute of Scientific and Industrial ResearchOsaka UniversityIbarakiJapan

Personalised recommendations