Crystallization kinetics, structure and dielectric properties of CaO–B2O3–SiO2 glass–ceramics nucleated by composite nucleating agents

  • Dongfeng HeEmail author
  • Hao Zhong
  • Chong Gao


The crystallization kinetics, structure and dielectric properties of CaO-B2O3–SiO2 (CBS) glass–ceramics, nucleated by composite nucleating agents (TiO2, ZrO2), are systematically investigated. The results reveal that the addition of composite nucleating agent (TiO2/ZrO2) destroyed the continuity of the glass network structure formed by SiO2 and B2O3, promoted the precipitation of wollastonite phase and enhanced the dielectric properties of as-prepared CBS glass–ceramics. However, the composite nucleating agent increased the crystallization temperature of the glass and introduced some impurity phases, influencing the microscopic arrangement of the wollastonite phase, whereas the content of impurity phases decreased with the increase of TiO2 content in the composite nucleating agent. Furthermore, the crystallization kinetics study showed that the composite nucleating agent reduced the crystallization activation energy of glass, and the crystallization of glass is controlled by one-dimensional interfacial crystal growth.



This study was funded by the National Natural Science Foundation of China (Grant No. 51534001).


  1. 1.
    M. Zitani, T. Ebadzadeh, S. Banijamail et al., High quality factor microwave dielectric diopside glass-ceramics for the low temperature co-fired ceramic (LTCC) applications[J]. J. Non-Cryst. Solids 487, 65–71 (2018)CrossRefGoogle Scholar
  2. 2.
    Y. Shang, C. Zhong, H. Xiong et al., Ultralow-permittivity glass/Al2O3 composite for LTCC applications[J]. Ceram. Int. 45(11), 13711–13718 (2019)CrossRefGoogle Scholar
  3. 3.
    O. Dernovsek, M. Eberstein, W.A. Schiller et al., LTCC glass-ceramic composites for microwave application[J]. J. Eur. Ceram. Soc. 21(10), 1693–1697 (2001)CrossRefGoogle Scholar
  4. 4.
    J. Rodel, A.B.N. Kounga, M. Weissenberger-Eibl et al., Development of a roadmap for advanced ceramics: 2010-2025 [J]. J. Eur. Ceram. Soc. 29, 1549–1560 (2009)CrossRefGoogle Scholar
  5. 5.
    J. Ma, Z. Fu, P. Liu et al., Microwave dielectric properties of low-fired Li2TiO3–MgO ceramics for LTCC applications[J]. Mater. Sci. Eng. 204, 15–19 (2016)CrossRefGoogle Scholar
  6. 6.
    Y. Qin, C. Zhong, H. Yang et al., Enhanced thermal and mechanical properties of Li–Al–Si composites with K2O–B2O3–SiO2 glass for LTCC application[J]. Ceram. Int. 45(12), 15654–15659 (2019)CrossRefGoogle Scholar
  7. 7.
    Y. Li, Y. Xie, R. Xie et al., A co-fireable material system for ceramics and ferrites hetero-laminates in LTCC substrates[J]. J. Alloy. Compd. 737, 144–151 (2018)CrossRefGoogle Scholar
  8. 8.
    P. Abhilash, M. Sebastian, K. Surendran, Structural, thermal and dielectric properties of rare earth substituted eulytite for LTCC applications[J]. J. Eur. Ceram. Soc. 36(8), 1939–1944 (2016)CrossRefGoogle Scholar
  9. 9.
    L. Ren, X. Luo, L. Hu et al., Synthesis and characterization of LTCC compositions with middle permittivity based on CaO–B2O3–SiO2 glass/CaTiO3 system[J]. J. Eur. Ceram. Soc. 37(2), 619–623 (2017)CrossRefGoogle Scholar
  10. 10.
    G.H. Chen, L.J. Tang et al., Synthesis and characterization of CBS glass/ceramic composites for LTCC application[J]. J. Alloys Compd. 478(1–2), 858–862 (2008)Google Scholar
  11. 11.
    J. Jean, C. Chang, C. Lei, Sintering of a crystallizable CaO–B2O3–SiO2 glass with silver[J]. J. Am. Ceram. Soc. 87(7), 1244–1249 (2004)CrossRefGoogle Scholar
  12. 12.
    X. Luo, L. Ren, Y. Xia et al., Microstructure, sinterability and properties of CaO–B2O3–SiO2 glass/Al2O3 composites for LTCC application[J]. Ceram. Int. 43(9), 6791–6795 (2017)CrossRefGoogle Scholar
  13. 13.
    M. Mohammadi, P. Alizadeh, Z. Atlasbaf, Effect of frit size on sintering, crystallization and electrical properties of wollastonite glass-ceramics[J]. J. Non-Cryst. Solids 357(1), 150–156 (2011)CrossRefGoogle Scholar
  14. 14.
    X. Zhou, E. Li, S. Yang et al., Effects of La2O3–B2O3 on the flexural strength and microwave dielectric properties of low temperature co-fired CaO–B2O3–SiO2 glass–ceramic[J]. Ceram. Int. 38(7), 5551–5555 (2012)CrossRefGoogle Scholar
  15. 15.
    W. Zhu, H. Jiang, S. Sun et al., Effect of TiO2 content on the crystallization behavior and properties of CaO–Al2O3–SiO2 glass ceramic fillers for high temperature joining application[J]. J. Alloy. Compd. 732(25), 141–148 (2018)CrossRefGoogle Scholar
  16. 16.
    S. Banijamali, B.E. Yekta, H.R. Rezaie et al., Crystallization and sintering characteristics of CaO–Al2O3–SiO2 glasses in the presence of TiO2, CaF2 and ZrO2[J]. Thermochim. Acta 488(1–2), 60–65 (2009)CrossRefGoogle Scholar
  17. 17.
    H. Li, D. Wang, X. Meng et al., Effect of ZrO2 additions on the crystallization, mechanical and biological properties of MgO–CaO–SiO2–P2O5–CaF2 bioactive glass-ceramics[J]. Colloids Surf. B 118, 226–233 (2014)CrossRefGoogle Scholar
  18. 18.
    D.F. He, H. Zhong, C. Gao, Effect of TiO2 doping on crystallization, microstructure and dielectric properties of CBS glass-ceramics[J]. J. Alloy. Compd. 799, 50–58 (2019)CrossRefGoogle Scholar
  19. 19.
    D.F. He, C. Gao, Effect of boron on crystallization, microstructure and dielectric properties of CBS glass-ceramics[J]. Ceram. Int. 44(14), 16246–16255 (2018)CrossRefGoogle Scholar
  20. 20.
    H. Zhu, M. Liu, H. Zhou et al., Preparation and properties of low-temperature co-fired ceramic of CaO–SiO2–B2O3 system[J]. J. Mater. Sci. 17(8), 637–641 (2006)Google Scholar
  21. 21.
    Z. Qing, The effects of B2O3 on the microstructure and properties of lithium aluminosilicate glass-ceramics for LTCC applications[J]. Mater. Lett. 212, 126–129 (2018)CrossRefGoogle Scholar
  22. 22.
    B. Li, H. Bian, K. Jing, Effect of MnO addition on microstructures and properties of BaO–Al2O3–B2O3–SiO2 glass-ceramics for LTCC application[J]. Mater. Lett. 234, 302–305 (2019)CrossRefGoogle Scholar
  23. 23.
    C.C. Chiang, S.F. Wang, Y.R. Wang et al., Characterizations of CaO–B2O3–SiO2 glass–ceramics: thermal and electrical properties[J]. J. Alloy. Compd. 461(1–2), 612–616 (2008)CrossRefGoogle Scholar
  24. 24.
    R. Wang, J. Zhou, B. Li et al., CaF2–AlF3–SiO2 glass-ceramic with low dielectric constant for LTCC application[J]. J. Alloy. Compd. 490(1–2), 204–207 (2010)CrossRefGoogle Scholar
  25. 25.
    L. Yuan, B. Liu, N. Shen et al., Synthesis and properties of borosilicate/AlN composite for low temperature co-fired ceramics application[J]. J. Alloy. Compd. 593, 34–40 (2014)CrossRefGoogle Scholar
  26. 26.
    S. Morimoto, N. Kuriyama, Effect of TiO2, ZrO2 and P2O5 on the crystallization of SiO2–Al2O3–MgO–CaO–Na2O glass system[J]. J. Ceram. Soc. Jpn. 104(5), 466–468 (1996)CrossRefGoogle Scholar
  27. 27.
    G. Khater, M. Idris, Role of TiO2 and ZrO2 on crystallizing phases and microstructure in Li, Ba aluminosilicate glass[J]. Ceram. Int. 33(2), 233–238 (2007)CrossRefGoogle Scholar
  28. 28.
    A. Goel, E. Shaaban, F. Melo et al., Non-isothermal crystallization kinetic studies on MgO–Al2O3–SiO2–TiO2 glass[J]. J. Non-Cryst. Solids 353(24–25), 2383–2391 (2007)CrossRefGoogle Scholar
  29. 29.
    R.G. Fernandes, P.S. Valle, D.F. Franco et al., Crystallization kinetics study of silver-doped germanium glasses[J]. Thermochim. Acta 673, 40–52 (2019)CrossRefGoogle Scholar
  30. 30.
    L. Han, J. Song, C. Lin et al., Crystallization, structure and properties of MgO-Al2O3-SiO2 highly crystalline transparent glass-ceramics nucleated by multiple nucleating agents[J]. J. Eur. Ceram. Soc. 38(13), 4533–4542 (2018)CrossRefGoogle Scholar
  31. 31.
    F. Pei, H. Guo, P. Li et al., Influence of low magnesia content on the CaO–Al2O3–SiO2 glass-ceramics: its crystallization behaviour, microstructure and physical properties[J]. Ceram. Int. 44(16), 20132–20139 (2018)CrossRefGoogle Scholar
  32. 32.
    Y. Liu, S. Yuan, J. Xie et al., A study on crystallization kinetics of thermoelectric Bi2Se3 crystals in Ge–Se–Bi chalcogenide glasses by differential scanning calorimeter[J]. J. Am. Ceram. Soc. 96(7), 2141–2146 (2013)CrossRefGoogle Scholar
  33. 33.
    Z. Qing, B. Li, Non-isothermal crystallization kinetics and properties of low temperature co-fired LiAlSi3O8-based glass-ceramics using zirconia additive[J]. J. Non-Cryst. Solids 495, 1–7 (2018)CrossRefGoogle Scholar
  34. 34.
    S. Panyata, S. Eitssayeam, G. Rujijanagul et al., Non-isothermal crystallization kinetics of bismuth germanate glass-ceramics[J]. Ceram. Int. 43, S407–S411 (2017)CrossRefGoogle Scholar
  35. 35.
    H. Yu, K. Ju, K. Wang, A novel glass-ceramic with ultra-low sintering temperature for LTCC application[J]. J. Am. Ceram. Soc. 97(3), 704–707 (2014)CrossRefGoogle Scholar
  36. 36.
    M. Wang, R.Z. Zuo, J. Jin et al., Investigation of the structure evolution process in sol–gel derived CaO–B2O3–SiO2 glass ceramics[J]. J. Non-Cryst. Solids 357(3), 1160–1163 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Ferrous Metallurgy, School of Metallurgical and Ecological EngineeringUniversity of Science and TechnologyBeijing, BeijingChina

Personalised recommendations