Advertisement

Enhancement the structural, optical and nonlinear optical properties of cadmium phosphate glasses by nickel ions

  • Waheed Sami AbuShanab
  • Essam B. Moustafa
  • Ahmed H. HammadEmail author
  • R. M. Ramadan
  • Ahmed R. Wassel
Article
  • 27 Downloads

Abstract

Cadmium phosphate glasses containing nickel oxide have successfully prepared through conventional melt quenching technique. The impact of nickel ions on the cadmium phosphate network has investigated by replacing the nickel oxide at the expense of the cadmium phosphate glass network. Structural investigation showed that CdO bands overlapped with P2O5 bands to form stable glasses while the NiO acts as a modifier. The density for the base glass is 3.743 g/cm3 increases to 4.094 g/cm3 for the glass containing the highest nickel oxide content. The optical absorption spectra illustrate that the nickel ions existed as divalent state. Optical band gap values decrease as the nickel oxide increases revealing that the nonbridging oxygen linkage formed as the nickel ions intercalated the cadmium phosphate network. The nonlinear refractive index investigated in terms of the linear refractive index and the nonlinear susceptibility. These glasses are exhibited to be lying in semiconductor and nonlinear optical glass category.

Notes

Acknowledgements

This work was supported by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under Grant No. (D-075-980-1439). The authors, therefore, gratefully acknowledge the DSR technical and financial support.

References

  1. 1.
    N. Kerkouri, M. Haddad, M. Et-tabirou, A. Chahine, L. Laânab, Phys. B 406, 3142 (2011)CrossRefGoogle Scholar
  2. 2.
    M.A. Ouis, M.A. Azooz, H.A. ElBatal, J. Non Cryst. Solids 494, 31 (2018)CrossRefGoogle Scholar
  3. 3.
    C.F. Drake, I.F. Scanlan, A. Engel, Phys. Status Solidi 32, 193 (1969)CrossRefGoogle Scholar
  4. 4.
    G.D.L.K. Jayasinghe, M.A.K.L. Dissanayake, M.A. Careem, J.L. Souquet, Solid State Ion. 93, 291 (1997)CrossRefGoogle Scholar
  5. 5.
    L.E. Bausa, F. Jaque, J.G. Sole, A. Duran, J. Mater. Sci. 23, 1921 (1988)CrossRefGoogle Scholar
  6. 6.
    M. Jamnický, P. Znášik, D. Tunega, M.D. Ingram, J. Non Cryst. Solids 185, 151 (1995)CrossRefGoogle Scholar
  7. 7.
    S.-H. Kim, T. Yoko, J. Am. Ceram. Soc. 78, 1061 (1995)CrossRefGoogle Scholar
  8. 8.
    R. Hussin, D. Holland, R. Dupree, J. Non Cryst. Solids 298, 32 (2002)CrossRefGoogle Scholar
  9. 9.
    E. Lifshitz, I.D. Litvin, H. Porteanu, A.A. Lipovskii, Chem. Phys. Lett. 295, 249 (1998)CrossRefGoogle Scholar
  10. 10.
    S. Jiang, T. Luo, B.C. Hwang, G. Nunzi-Conti, M. Myers, D. Rhonehouse, S. Honkanen, N.N. Peyghambarian, Opt. Eng. 37, 3282 (1998)CrossRefGoogle Scholar
  11. 11.
    D.L. Veasey, D.S. Funk, N.A. Sanford, J.S. Hayden, Appl. Phys. Lett. 74, 789 (1999)CrossRefGoogle Scholar
  12. 12.
    S.W. Martin, Eur. J. Solid State Inorg. Chem. 28, 163 (1991)Google Scholar
  13. 13.
    U. Hoppe, G. Walter, A. Barz, D. Stachel, A.C. Hannon, J. Phys. 10, 261 (1998)Google Scholar
  14. 14.
    T. Kalpana, M.G. Brik, V. Sudarsan, P. Naresh, V.R. Kumar, I.V. Kityk, N. Veeraiah, J. Non Cryst. Solids 419, 75 (2015)CrossRefGoogle Scholar
  15. 15.
    S. Hraiech, M. Ferid, Y. Guyot, G. Boulon, J. Rare Earths 31, 685 (2013)CrossRefGoogle Scholar
  16. 16.
    K. Liu, E.Y.B. Pun, J. Alloys Compd. 470, 340 (2009)CrossRefGoogle Scholar
  17. 17.
    A. Levoshkin, A. Petrov, J.E. Montagne, Opt. Commun. 185, 399 (2000)CrossRefGoogle Scholar
  18. 18.
    J.-Y. Chung, J.-H. Kim, S.-Y. Choi, H.-J. Park, M.-K. Hwang, Y.-K. Jeong, B.-K. Ryu, J. Korean Ceram. Soc. 52, 128 (2015)CrossRefGoogle Scholar
  19. 19.
    R.V.S.S.N. Ravikumar, R. Komatsu, K. Ikeda, A.V. Chandrasekhar, B.J. Reddy, Y.P. Reddy, P.S. Rao, Solid State Commun. 126, 251 (2003)CrossRefGoogle Scholar
  20. 20.
    A.H. Hammad, A.M. Abdelghany, A. Okasha, S.Y. Marzouk, J. Mater. Sci. 28, 8662 (2017)Google Scholar
  21. 21.
    A.H. Hammad, H.M. Elsaghier, W. Abbas, N.A. Zidan, S.Y. Marzouk, Measurement 116, 170 (2018)CrossRefGoogle Scholar
  22. 22.
    A.M. Abdelghany, A.H. Hammad, J. Mol. Struct. 1081, 342 (2015)CrossRefGoogle Scholar
  23. 23.
    M.A. Ouis, H.A. Elbatal, A.M. Abdelghany, A.H. Hammad, J. Mol. Struct. 1103, 224 (2016)CrossRefGoogle Scholar
  24. 24.
    F.H. ElBatal, H.A. ElBatal, A.H. Hammad, Silicon 10, 831 (2018)CrossRefGoogle Scholar
  25. 25.
    Y.M. Moustafa, K. El-Egili, J. Non Cryst. Solids 240, 144 (1998)CrossRefGoogle Scholar
  26. 26.
    H. Doweidar, Y.M. Moustafa, K. El-Egili, I. Abbas, Vib. Spectrosc. 37, 91 (2005)CrossRefGoogle Scholar
  27. 27.
    N. Rajesh, J.C. Kannan, S.G. Leonardi, G. Neri, T. Krishnakumar, J. Alloys Compd. 607, 54 (2014)CrossRefGoogle Scholar
  28. 28.
    A. Askarinejad, A. Morsali, Mater. Lett. 62, 478 (2008)CrossRefGoogle Scholar
  29. 29.
    M. Ristić, S. Popović, S. Musić, Mater. Lett. 58, 2494 (2004)CrossRefGoogle Scholar
  30. 30.
    W.-G. Choi, T.-H. Kim, D.-G. Gwoo, K.-B. Kee, J.-H. Kim, K.-S. Han, B.-K. Ryu, Electron. Mater. Lett. 9, 83 (2013)CrossRefGoogle Scholar
  31. 31.
    B.V. Kumar, T. Sankarappa, M.P. Kumar, S. Kumar, J. Non Cryst. Solids 355, 229 (2009)CrossRefGoogle Scholar
  32. 32.
    D. Souri, J. Non Cryst. Solids 356, 2181 (2010)CrossRefGoogle Scholar
  33. 33.
    A.H. Hammad, S.A.M. Abdel-Hameed, F.H. Margha, J. Alloys Compd. 627, 423 (2015)CrossRefGoogle Scholar
  34. 34.
    R.B. Rao, R.A. Gerhardt, Mater. Chem. Phys. 112, 186 (2008)CrossRefGoogle Scholar
  35. 35.
    E. Zannoni, E. Cavalli, A. Toncelli, M. Tonelli, M. Bettinelli, J. Phys. Chem. Solids 60, 449 (1999)CrossRefGoogle Scholar
  36. 36.
    E.A. Davis, N.F. Mott, Philos. Mag. 22, 0903 (1970)CrossRefGoogle Scholar
  37. 37.
    F. Yakuphanoglu, M. Arslan, Phys. B 393, 304 (2007)CrossRefGoogle Scholar
  38. 38.
    A.H.H. Hammad, A.M.M. Abdelghany, J. Non Cryst. Solids 433, 14 (2016)CrossRefGoogle Scholar
  39. 39.
    S. Sindhu, S. Sanghi, A. Agarwal, R. Sonam, V.P. Seth, N. Kishore, Phys. B 365, 65 (2005)CrossRefGoogle Scholar
  40. 40.
    A.M. Abdelghany, A.H. Hammad, Spectrochim. Acta A 137, 39–44 (2015)CrossRefGoogle Scholar
  41. 41.
    V. Dimitrov, S. Sakka, J. Appl. Phys. 79, 1741 (1996)CrossRefGoogle Scholar
  42. 42.
    T.S. Moss, Phys. Status Solidi 131, 415 (1985)CrossRefGoogle Scholar
  43. 43.
    Z. Zhenyu, S. Jiatian, S. Zhenrong, L. Jian, H. Wenhai, W. Zugeng, Chin. Sci. Bull. 49, 2446 (2004)CrossRefGoogle Scholar
  44. 44.
    A.M. Ibrahim, A.H. Hammad, A.M. Abdelghany, G.O. Rabie, J. Non Cryst. Solids 495, 67 (2018)CrossRefGoogle Scholar
  45. 45.
    V. Dimitrov, T. Komatsu, J. Non Cryst. Solids 249, 160 (1999)CrossRefGoogle Scholar
  46. 46.
    M.J. Weber, D. Milam, W.L. Smith, Opt. Eng. 17, 463 (1978)CrossRefGoogle Scholar
  47. 47.
    C. Eevon, M.K. Halimah, A. Zakaria, C.A.C. Azurahanim, M.N. Azlan, M.F. Faznny, Results Phys. 6, 761 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Marine Engineering Department, Faculty of Maritime Studies and Marine EngineeringKing Abdulaziz UniversityJeddahSaudi Arabia
  2. 2.Mechanical Engineering Department, Faculty of EngineeringKing Abdulaziz UniversityJeddahSaudi Arabia
  3. 3.Center of Nanotechnology, King Abdulaziz UniversityJeddahSaudi Arabia
  4. 4.Electron Microscope and Thin Films Department, Physics Research DivisionNational Research CentreGizaEgypt
  5. 5.Microwave Physics and Dielectrics, Physics Research DivisionNational Research CentreGizaEgypt

Personalised recommendations