Low temperature sintering and dielectric properties of Li2MgTiO4 microwave ceramics with BaCu(B2O5) addition for LTCC applications

  • Yong-jun GuEmail author
  • Xing-hua Yang
  • Xiao Wang
  • Jin-liang Huang
  • Qian Li
  • Li-hua Li
  • Xin-li Li
  • Bok-hee Kim


The sintering behaviors and dielectric properties of the Li2MgTiO4 ceramics at microwave frequency were investigated as a function of BaCu(B2O5) in this paper. The addition of BaCu(B2O5) dramatically decreased the sintering temperature of Li2MgTiO4 ceramics from 1250 to 900 °C. No secondary phase was detected and single phase Li2MgTiO4 with NaCl structure in the 1.0–4.0 wt% BaCu(B2O5) doped Li2MgTiO4 ceramics was confirmed, while a small amount of BaCu(B2O5) phase was found in the 8.0 wt% BaCu(B2O5) doped Li2MgTiO4 ceramics. No much deterioration of dielectric properties at microwave frequency of the BaCu(B2O5) doped Li2MgTiO4 ceramics sintered at 900 °C for 3 h occurs and favorable dielectric properties (εr = 15.8, Qf = 74,790 GHz and τf = − 24.3 ppm/°C) at microwave frequency were obtained for the Li2MgTiO4 ceramics with 4.0 wt% BaCu(B2O5) addition. Accordingly, such a favorable 4.0 wt% BaCu(B2O5)-doped Li2MgTiO4 ceramic might be a potential candidate material for LTCC applications.



This work was supported by the Development Funds of Henan University of Science & Technology for High Level Scientific Research Project (Grant No. 2015GJB005), Natural Science Foundation of Henan Province (Grant No. 162300410088), and Henan Key Laboratory of Research for Central Plains Ancient Ceramics, Pingdingshan University (Grant No. ZYGTCXW2018-02).


  1. 1.
    L.H. Brixner, Preparation, structure and electrical properties of some substituted lithium-oxo-metallates. J. Inorg. Nucl. Chem. 16, 162–163 (1960)CrossRefGoogle Scholar
  2. 2.
    J. Bernard, D. Houivet, M. Hervieu, J.M. Haussonne, Evidence of the formation of a new rock-salt type compound Li2MgTiO4 and of its role on the properties of the Li doped MgTiO3. Solid State Sci. 8, 598–605 (2006)CrossRefGoogle Scholar
  3. 3.
    M.V.V.M. Satya Kishore, S. Marinel, V. Pralong, V. Caignaert, S. D’Astorg, B. Raveau, The rock salt oxide Li2MgTiO4: type I dielectric and ionic conductor. Mater. Res. Bull. 41, 1378–1384 (2006)CrossRefGoogle Scholar
  4. 4.
    Y.-W. Tseng, J.-Y. Chen, Y.-C. Kuo, C.-L. Huang, Low-loss microwave dielectrics using rock salt oxide Li2MgTiO4. J. Alloys Compd. 509, L308–L310 (2011)CrossRefGoogle Scholar
  5. 5.
    G.-G. Yao, H. Ma, X.-L. Tian, Dielectric properties of Li2MgTiO4 ceramic system at microwave frequency. Key Eng. Mater. 538, 246–249 (2013)CrossRefGoogle Scholar
  6. 6.
    G.-G. Yao, X.-S. Hu, X.-L. Tian, P. Liu, J.-P. Zhou, Synthesis and microwave dielectric properties of Li2MgTiO4 ceramics. Ceram. Int. 41, S563–S566 (2015)CrossRefGoogle Scholar
  7. 7.
    B. Guo, P. Liu, P. Ruan, X. Bai, Microwave dielectric properties of Li2MgTiO4 ceramics synthesized via high energy ball milling method. Ferroelectrics 494, 123–130 (2016)Google Scholar
  8. 8.
    H.L. Pan, C.F. Xing, X.S. Jiang, H.T. Wu, Characterization on low loss dielectric Li2MgTiO4 ceramics based on chemical bond theory at microwave frequency. J. Alloys Compd. 688, 416–421 (2016)CrossRefGoogle Scholar
  9. 9.
    X. Zhou, L. Xue, H. Sun, H. Yang, S. Zhang, Influence of CaTiO3 doping on the microwave dielectric properties of Li2MgTiO4 ceramics. J. Mater. Sci.: Mater. Electron. 29, 643–649 (2018)Google Scholar
  10. 10.
    P. Wang, Y.R. Wang, J.X. Bi, H.T. Wu, Effects of Zn2+ substitution on the crystal structure, Raman spectra, bond energy and microwave dielectric properties of Li2MgTiO4 ceramics. J. Alloys Compd. 721, 143–148 (2017)CrossRefGoogle Scholar
  11. 11.
    C.H. Yang, C.F. Xing, L. Zhao, J.X. Bi, H.T. Wu, Effect of Co-substitution on the sintering characteristics and microwave dielectric properties of Li2MgTiO4 ceramics. Ceram. Int. 44, 7286–7290 (2018)CrossRefGoogle Scholar
  12. 12.
    J.X. Bi, C.F. Xing, X.S. Jiang, C.H. Yang, H.T. Wu, Characterization and microwave dielectric properties of new low loss Li2MgZrO4 ceramics. Mater. Lett. 184, 269–272 (2016)CrossRefGoogle Scholar
  13. 13.
    C.H. Yang, Q.Q. Liu, J.X. Bi, W.H. Tao, H.T. Wu, Effects of (Mg1/3Ta2/3)-substitution for Ti-site on the microwave dielectric properties of Li2MgTiO4 ceramics. Ceram. Int. 44, 5982–5987 (2018)CrossRefGoogle Scholar
  14. 14.
    C.H. Yang, H.T. Wu, Phase composition, Raman spectra, infrared spectra and dielectric properties of Li2MgTi1-x(Mg1/3Nb2/3)xO4 ceramics at microwave frequency. Ceram. Int. 44, 9255–9262 (2018)CrossRefGoogle Scholar
  15. 15.
    C.-Y. Liu, M.-H. Tsai, M.-S. Wu, C.-H. Lai, Microwave dielectric properties of B2O3-added Li2MgTiO4 ceramics for LTCC applications. Integr. Ferroelectr. 168, 25–35 (2016)CrossRefGoogle Scholar
  16. 16.
    C. Pei, G. Yao, P. Liu, J. Zhou, Low temperature sintering and microwave dielectric properties of Li2MgTiO4-based temperature stable ceramics. Mater. Lett. 184, 57–59 (2016)CrossRefGoogle Scholar
  17. 17.
    Y.-J. Gu, J.-L. Huang, Q. Li, X.-M. Ning, L.-H. Li, X.-L. Li, A novel low-fired and high-εr microwave dielectric ceramic BaCu(B2O5)-added 0.6Ca3/5La4/15TiO3-0.4Li1/2Nd1/2TiO3. J. Mater. Sci.: Mater. Electron. 29, 11378–11383 (2018)Google Scholar
  18. 18.
    Y.-J. Gu, C. Li, J.-L. Huang, Q. Li, L.-H. Li, X.-L. Li, Effect of BaCu(B2O5) on the sintering and microwave dielectric properties of Ca0.4Li0.3Sm0.05Nd0.25TiO3 ceramics. J. Eur. Ceram. Soc. 37, 4673–4679 (2017)CrossRefGoogle Scholar
  19. 19.
    B.W. Hakki, P.D. Coleman, A dielectric resonator method of measuring inductive capacities in the millimeter range. IEEE Trans. Microw. Theory Tech. 8, 402–410 (1960)CrossRefGoogle Scholar
  20. 20.
    Y.-J. Gu, L.-W. Lei, J.-L. Huang, X.-H. Yang, Q. Li, L.-H. Li, X.-L. Li, B.-H. Kim, A novel low-fired, temperature-stable, and low-cost (1−x)BaCu(B2O5)−xTiO2 microwave dielectric ceramic. J. Eur. Ceram. Soc. 39, 1137–1141 (2019)CrossRefGoogle Scholar
  21. 21.
    M.H. Kim, J.B. Lim, J.C. Kim, S. Nahm, J.H. Paik, J.H. Kim, K.S. Park, Synthesis of BaCu(B2O5) ceramics and their effect on the sintering temperature and microwave dielectric properties of Ba(Zn1/3Nb2/3)O3 ceramics. J. Am. Ceram. Soc. 89, 3124–3128 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Henan Key Laboratory of Research for Central Plains Ancient CeramicsPingdingshan UniversityPingdingshanChina
  2. 2.School of Materials Science and EngineeringHenan University of Science and TechnologyLuoyangChina
  3. 3.School of Chemical & Materials EngineeringHenan University of Urban ConstructionPingdingshanChina
  4. 4.Collaborative Innovation Center of Nonferrous MetalsLuoyangChina
  5. 5.Department of Electronic Materials EngineeringChonbuk National UniversityJeonjuSouth Korea

Personalised recommendations