Advertisement

Dielectric behavior in erbium-doped tellurite glass for potential high-energy capacitor

  • M. N. AzlanEmail author
  • S. Z. Shafinas
  • M. K. Halimah
  • A. B. Suriani
Article
  • 40 Downloads

Abstract

The use of erbium ions, Er3+ to enhance the dielectric properties is investigated in tellurite glass system for the first time, to the best of our knowledge. A glass series of tellurite glass with chemical composition, {[(TeO2)70(B2O3)30]70(ZnO)30}100−y(Er2O3)y (y = 0, 0.005, 0.01, 0.02, 0.03, 0.04 and 0.05) was fabricated via melt-quenched technique. The X-ray diffraction and Fourier transform infrared spectroscopy analysis proved the amorphous structure and the formation of nonbridging oxygen in the glass system. The Er3+ ions affect greatly to the dielectric constant, ε′ in which the dielectric constant, ε′ show high value at a lower frequency and higher temperature (above 110 °C). The reduction of dielectric constant, ε′ is found with the increment value of frequency, which corresponds to the formation of the hindrance effect on heavy dipoles caused by the mixed transition-ion effect. Meanwhile, the dielectric constant, ε′ is enhanced with the increase of temperature. The activation energy of the glass system is found to decrease, which is due to the high polarizability of Er3+ ions in the glass system. Based on these results, the erbium-doped tellurite glass is a potential kind of high-energy capacitor.

Notes

Acknowledgements

The writers appreciate the financial support for the work from the Ministry of Higher Education of Malaysia and Universiti Pendidikan Sultan Idris through Skim Geran Penyelidikan Fundamental, FRGS [Code 2019-0006-102-02 (FRGS/1/2018/STG07/UPSI/02/1)] and Geran Penyelidikan Universiti, GPU (Code 2018-0139-103-1). The authors would like to thank the following institutions for equipment support: Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris and Faculty of Science, Universiti Putra Malaysia.

References

  1. 1.
    V. Fuertes, M.J. Cabrera, J. Seores, D. Muñoz, J.F. Fernández, E. Enríquez, Microstructural study of dielectric breakdown in glass–ceramics insulators. J. Eur. Ceram. Soc. 39, 376–383 (2019)CrossRefGoogle Scholar
  2. 2.
    M.N. Azlan, M.K. Halimah, Role of Nd3+ nanoparticles on enhanced optical efficiency in borotellurite glass for optical fiber. Results Phys. 11, 58–64 (2018)CrossRefGoogle Scholar
  3. 3.
    N.N. Yusof, S.K. Ghoshal, M.N. Azlan, Optical properties of titania nanoparticles embedded Er3+ doped tellurite glass: Judd-Ofelt analysis. J. Alloy Compd. 724, 1083–1092 (2017)CrossRefGoogle Scholar
  4. 4.
    M.K. Halimah, M.F. Faznny, M.N. Azlan, H.A.A. Sidek, Optical basicity and electronic polarizability of zinc borotellurite glass doped La3+ ions. Results Phys. 7, 581–589 (2017)CrossRefGoogle Scholar
  5. 5.
    M.S. Sajna, S. Thomas, C. Jayakrishnan, C. Joseph, P.R. Biju, N.V. Unnikrishnan, NIR emission studies and dielectric properties of Er3+-doped multicomponent tellurite glasses. Spectrochim. Acta A 161, 130–137 (2016)CrossRefGoogle Scholar
  6. 6.
    K.L. Xu, Y. Yan, L. Zhang, H.L. Pan, J.F. Zhao, X. Jia, G. Wang, H.T. Wu, Study on structural, dielectric, thermal and chemical characteristics of aluminoborosilicate glasses doped by rare earth oxides. Mater. Technol. 29, A40–A43 (2014)CrossRefGoogle Scholar
  7. 7.
    D. Jiang, J. Chen, B. Lu, J. Xi, F. Shang, J. Xu, G. Chen, Preparation, crystallization kinetics and microwave dielectric properties of CaO–ZnO–B2O3–P2O5–TiO2 glass–ceramics. Ceram. Int. 45(7, Part A), 8233–8237 (2019)CrossRefGoogle Scholar
  8. 8.
    P.-K. Fischer, G.A. Schneider, Dielectric breakdown toughness from filament induced dielectric breakdown in borosilicate glass. J. Eur. Ceram. Soc. 38, 4476–4482 (2018)CrossRefGoogle Scholar
  9. 9.
    S. Zheng, Y. Zhou, D. Yin, X. Xu, Y. Qi, S. Peng, The 1.53 μm spectroscopic properties and thermal stability in Er3+/Ce3+ codoped TeO2–WO3–Na2O–Nb2O5 glasses. J. Quant. Spectrosc. Radiat. Transf. 120, 44–51 (2013)CrossRefGoogle Scholar
  10. 10.
    N. Yaru, L. Chunhua, Z. Yan, Z. Qitu, X. Zhongzi, Study on optical properties and structure of Sm2O3 doped boron-aluminosilicate glass. J. Rare Earths 25, 94–98 (2007)CrossRefGoogle Scholar
  11. 11.
    A.M. Noorazlan, H.M. Kamari, S.S. Zulkefly, D.W. Mohamad, Effect of erbium nanoparticles on optical properties of zinc borotellurite glass system. J. Nanomater. (2013).  https://doi.org/10.1155/2013/940917 Google Scholar
  12. 12.
    C. Eevon, M.K. Halimah, A. Zakaria, C.A.C. Azurahanim, M.N. Azlan, M.F. Faznny, Linear and nonlinear optical properties of Gd3+ doped zinc borotellurite glasses for all-optical switching applications. Results Phys. 6, 761–766 (2016)CrossRefGoogle Scholar
  13. 13.
    M.H. Shaaban, A.A. Ali, M.K. El-Nimr, The AC conductivity of tellurite glasses doped with Ho2O3. Mater. Chem. Phys. 96, 433–438 (2006)CrossRefGoogle Scholar
  14. 14.
    P. Gayathri Pavani, K. Sadhana, V. Chandra Mouli, Optical, physical and structural studies of boro zinc tellurite glasses. Physica B 406, 1242–1247 (2011)CrossRefGoogle Scholar
  15. 15.
    Y.B. Saddeek, E.R. Shaaban, E.S. Moustafa, H.M. Moustafa, Spectroscopic properties, electronic polarizability, and optical basicity of Bi2O3–Li2O–B2O3 glasses. Physica B 403, 2399–2407 (2008)CrossRefGoogle Scholar
  16. 16.
    S.N. Nazrin, M.K. Halimah, F.D. Muhammad, J.S. Yip, L. Hasnimulyati, M.F. Faznny, M.A. Hazlin, I. Zaitizila, The effect of erbium oxide in physical and structural properties of zinc tellurite glass system. J. Noncryst. Solids 490, 35–43 (2018)CrossRefGoogle Scholar
  17. 17.
    X.A. Shen, T.F. Xu, X.D. Zhang, S.X. Dai, Q.H. Nie, X.H. Zhang, Effect of SiO2 content on the thermal stability and spectroscopic properties of Er3+/Yb3+ co-doped tellurite borate glasses. Physica B 389(2), 242–247 (2007)CrossRefGoogle Scholar
  18. 18.
    R. Hisam, A.K. Yahya, H. Mohamed Kamari, Z.A. Talib, R.H. Yahaya Subban, Anomalous dielectric constant and AC conductivity in mixed transition-metal-ion xFe2O3–(20–x)MnO2–80TeO2 glass system. Mater. Express 6(2), 149–160 (2016)CrossRefGoogle Scholar
  19. 19.
    M. Bosca, L. Pop, G. Borodi, P. Pascuta, E. Culea, XRD and FTIR structural investigations of erbium doped bismuth–lead–silver glasses and glass ceramics. J. Alloys Compd. 479, 579–582 (2009)CrossRefGoogle Scholar
  20. 20.
    E.A. Mohamed, M.G. Moustafa, I. Kashif, Microstructure, thermal, optical and dielectric properties of new glass nanocomposites of SrTiO3 nanoparticles/clusters in tellurite glass matrix. J. Noncryst. Solids 482, 223–229 (2018)CrossRefGoogle Scholar
  21. 21.
    P.N. Musfir, S. Mathew, V.P.N. Nampoori, S. Thomas, Investigations on frequency and temperature dependence of AC conductivity and dielectric parameters in Ge20Ga5Sb10S65 quaternary chalcogenide glass. Optik 182, 1244–1251 (2019)CrossRefGoogle Scholar
  22. 22.
    R. Hisam, A.K. Hayati Yahya, D. Said, M.F. Mustafa, AC conductivity and dielectric properties of strontium–lead borate glasses. Int. J. Eng. Technol. (UAE) 7, 143–146 (2018)Google Scholar
  23. 23.
    D. He, C. Gao, Effect of boron on crystallization, microstructure and dielectric properties of CBS glass–ceramics. Ceram. Int. 44, 16246–16255 (2018)CrossRefGoogle Scholar
  24. 24.
    P. Tripathi, P. Kumari, V.K. Mishra, R. Singh, S.P. Singh, D. Kumar, Effect of PbO–B2O3–BaO–SiO2 glass additive on dielectric properties of Ba0.5Sr0.5TiO3 ceramics for radio-frequency applications. J. Phys. Chem. Solids 127, 60–67 (2019)CrossRefGoogle Scholar
  25. 25.
    S. Wang, J. Tian, T. Jiang, J. Zhai, B. Shen, Effect of phase structures on dielectric properties and energy storage performances in Na2O–BaO–PbO–Nb2O5–SiO2–Al2O3 glass–ceramics. Ceram. Int. 44, 23109–23115 (2018)CrossRefGoogle Scholar
  26. 26.
    M.K. Prashant, T. Sankarappa, B.K. Vijaya, N. Nagaraja, Dielectric relaxation studies in transition metal ions doped tellurite glasses. Solid States Sci. 11, 214–218 (2009)CrossRefGoogle Scholar
  27. 27.
    M.K. Prashant, T. Sankarappa, K. Santhosh, AC conductivity studies in rare earth ions doped vanadotellurite glasses. J. Alloy Compd. 464, 393–398 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Physics Department, Faculty of Science and MathematicsUniversiti Pendidikan Sultan IdrisTanjung MalimMalaysia
  2. 2.Physics Department, Faculty of ScienceUniversity Putra MalaysiaUPM SerdangMalaysia

Personalised recommendations