Fabrication of visible light photodetector using co-evaporated Indium Sulfide thin films

  • B. Hemanth Kumar
  • S. Shaji
  • M. C. Santhosh KumarEmail author


Indium Sulfide (In2S3) is a promising candidate to replace Cadmium Sulfide (CdS) as a buffer layer in thin film solar cells because of its n-type conductivity and wide energy band gap. In this study, In2S3 thin films are deposited on glass substrates at different substrate temperatures in the range of 200–350 °C by co-evaporation technique. The X-ray diffraction and Raman analysis confirm the formation of tetragonal β-In2S3 thin films. The X-ray Photoelectron Spectroscopy and Energy Dispersive X-ray Spectroscopy results reveal presence of constituent elements. The energy band gap was observed in the range of 2.45–2.54 eV and band gap is increasing with increase of substrate temperature. Hall Effect measurement shows n-type conductivity for all films. Photodetectors were fabricated and tested under the light illumination by solar simulator with AM 1.5G filter. The photo detection parameters like sensitivity, responsivity and detectivity were calculated for all photodetectors.



This study was not funded by any external agency

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest with respect to the research work reported in this paper.


  1. 1.
    F. Mesa, W. Chamorro, M. Hurtado, Appl. Surf. Sci. 350, 38 (2015)CrossRefGoogle Scholar
  2. 2.
    S.P. Nehra, S. Chander, A. Sharma, Mater. Sci. Semicond. Process. 40, 26 (2015)CrossRefGoogle Scholar
  3. 3.
    S.S. Wang, F.J. Shiou, C.C. Tsao, S.W. Huang, C.Y. Hsu, Mater. Sci. Semicond. Process. 16, 1879 (2013)CrossRefGoogle Scholar
  4. 4.
    S. Lugo-Loredo, Y. Peña-Méndez, M. Calixto-Rodriguez, S. Messina-Fernández, A. Alvarez-Gallegos, A. Vázquez-Dimas, T. Hernández-García, Thin Solid Films 550, 110–113 (2014)CrossRefGoogle Scholar
  5. 5.
    S. Karthikeyan, E. Arthur, R. Hill, D. Pilkington, Appl. Surf. Sci. 418, 199 (2017)CrossRefGoogle Scholar
  6. 6.
    V.G. Rajeshmon, N. Poornima, C. Sudha Kartha, K.P. Vijayakumar, J. Alloys Compd. 553, 239–244 (2013)CrossRefGoogle Scholar
  7. 7.
    R. Souissi, N. Bouguila, A. Labidi, Sens. Actuators, B 261, 522 (2018)CrossRefGoogle Scholar
  8. 8.
    E. Karber, K. Otto, A. Katerski, A. Mere, M. Krunks, Mater. Sci. Semicond. Process. 25, 137 (2014)CrossRefGoogle Scholar
  9. 9.
    Y. Ben Salem, M. Kilani, N. Kamoun, Results Phys. 10, 706–713 (2018)CrossRefGoogle Scholar
  10. 10.
    S. Rasool, G.P. Reddy, K.R. Reddy, M. Tivanov, V.F. Gremenok, Mater. Today 14, 12491–12495 (2017)Google Scholar
  11. 11.
    C. Laurencic, L. Arzel, F. Couzinié-Devy, N. Barreau, Thin Solid Films 519, 7553 (2011)CrossRefGoogle Scholar
  12. 12.
    Y. Ji, Y. Ou, Z. Yu, Y. Yan, D. Wang, C. Yan, L. Liu, Y. Zhang, Y. Zhao, Surf. Coat. Technol. 276, 587 (2015)CrossRefGoogle Scholar
  13. 13.
    A.O. Juma, Nucl. Instrum. Methods Phys. Res. 385, 84 (2016)CrossRefGoogle Scholar
  14. 14.
    J.R. Mohamed, L. Amalraj, J. Asian Ceram. Soc. 4, 357 (2016)CrossRefGoogle Scholar
  15. 15.
    N. Barreau, S. Marsillac, J.C. Bernede, Vacuum 56, 101 (2000)CrossRefGoogle Scholar
  16. 16.
    M. Hamici, S. Gessoum, L. Vaillant, Y. Gagou, P. Saint-Gregoire, J. Electron. Mater. 48(7), 4715–4725 (2019)CrossRefGoogle Scholar
  17. 17.
    X. Feng, Y. Chen, M. Wang, L. Guo, Int. J. Hydrogen Energy 42, 15085 (2017)CrossRefGoogle Scholar
  18. 18.
    T. Todorov, J. Carda, P. Escribano, A. Grimm, J. Klaer, R. Klenk, Sol. Energy Mater. Sol. Cells 92, 1274 (2008)CrossRefGoogle Scholar
  19. 19.
    T. Sall, B.M. Soucase, M. Mollar, B. Hartitti, M. Fahoume, J. Phys. Chem. Solids 76, 100 (2015)CrossRefGoogle Scholar
  20. 20.
    R. Suryanarayanan, Thin Solid Films 50, 349 (1978)CrossRefGoogle Scholar
  21. 21.
    S. Rasool, K. Saritha, K.T.R. Reddy, K.R. Reddy, L. Bychto, A. Patryn, M. Maliński, M.S. Tivanov, V.F. Gremenok, Mater. Sci. Semicond. Process. 72, 4 (2017)CrossRefGoogle Scholar
  22. 22.
    K. Otto, A. Katerski, A. Mere, O. Volobujeva, M. Krunks, Thin Solid Films 519, 3055 (2011)CrossRefGoogle Scholar
  23. 23.
    N. Revathi, P. Prathap, Y.P.V. Subbaiah, KT Ramakrishna Reddy. J. Phys. D 41, 155404 (2008)CrossRefGoogle Scholar
  24. 24.
    J. Rousset, F. Donsanti, P. Genevée, G. Renou, D. Lincot, Sol. Energy Mater. Sol. Cells 95, 1544 (2011)CrossRefGoogle Scholar
  25. 25.
    P.E. Rodriguez-Hernandez, K.E. Nieto-Zepeda, A. Guillén-Cervantes, J. Santoyo-Salazar, J. Santos-Cruz, J.S. Arias-Ceron, M. Olvera, O. Zelaya-Angel, G. Contreras-Puente, F. deMoure-Flores, Chalcogenide Lett. 14(8), 331–335 (2017)Google Scholar
  26. 26.
    Spasevska H, Kitts CC, Ancora C, Ruani G (2012) Int. J. Photoenergy 2012Google Scholar
  27. 27.
    H. Tao, S. Mao, G. Dong, H. Xiao, X. Zhao, Solid State Commun. 137, 408 (2006)CrossRefGoogle Scholar
  28. 28.
    B. Asenjo, C. Guillén, A.M. Chaparro, E. Saucedo, V. Bermudez, D. Lincot, J. Herrero, M.T. Gutiérrez, J. Phys. Chem. Solids 71, 1629 (2010)CrossRefGoogle Scholar
  29. 29.
    T.T. John, C. Sudha Kartha, K.P. Vijayakumar, T. Abe, Y. Kashiwaba, Vacuum 80(8), 870–875 (2006)CrossRefGoogle Scholar
  30. 30.
    M. Mathew, M. Manju Gopinath, C. Sudha Kartha, K.P. Vijayakumar, Y. Kashiwaba, T. Abe, Solar Energy 84(6), 888–897 (2010)CrossRefGoogle Scholar
  31. 31.
    A. Omelianovych, J.H. Kim, L. Liudmila, B. Tae Ahn, Curr. Appl. Phys. 15(12), 1641–1649 (2015)CrossRefGoogle Scholar
  32. 32.
    T. Srinivasa Reddy, M.C. Santhosh Kumar, Ceram. Int. 42(10), 12262–12269 (2016)CrossRefGoogle Scholar
  33. 33.
    T. Srinivasa Reddy, M.C. Santhosh Kumar, RSC Adv. 6(98), 95680–95692 (2016)CrossRefGoogle Scholar
  34. 34.
    W. Xu, J. Jiang, S. Xu, Y. Zhang, H. Xu, L. Han, X. Feng, J. Alloys Compd. 791, 773 (2019)CrossRefGoogle Scholar
  35. 35.
    R. Swanepoel, J. Phys. E 16, 1214 (1983)CrossRefGoogle Scholar
  36. 36.
    A. Ashour, N. El-Kadry, S.A. Mahmoud, Thin Solid Films 269, 117 (1995)CrossRefGoogle Scholar
  37. 37.
    E. Jose, M.C. Santhosh Kumar, J. Alloys Compd. 712, 649–656 (2017)CrossRefGoogle Scholar
  38. 38.
    D.H. Hwang, S. Cho, K. Nam Hui, Y. Guk Son, J. Nanosci. Nanotechnol. 14(12), 8978–8981 (2014)CrossRefGoogle Scholar
  39. 39.
    N. Revathi, P. Prathap, K.T. Ramakrishna Reddy, Solid State Sci. 11(7), 1288–1296 (2009)CrossRefGoogle Scholar
  40. 40.
    R.K. Jain, J. Kaur, S. Arora, A. Kumar, A.K. Chawla, A. Khanna, Appl. Surf. Sci. 463, 45 (2019)CrossRefGoogle Scholar
  41. 41.
    A.A. El Shazly, D. Abd Elhady, H.S. Metwally, M.A.M. Seyam, J. Phys. 10, 5943 (1998)Google Scholar
  42. 42.
    R.B. Kale, C.D. Lokhande, Appl. Surf. Sci. 223, 343 (2004)CrossRefGoogle Scholar
  43. 43.
    M.S. Mahdi, K. Ibrahim, N.M. Ahmed, A. Hmood, F.I. Mustafa, S.A. Azzez, M. Bououdina, J. Alloys Compd. 735, 2256 (2018)CrossRefGoogle Scholar
  44. 44.
    K.S. Gour, O.P. Singh, B. Bhattacharyya, R. Parmar, S. Husale, T.D. Senguttuvan, V.N. Singh, J. Alloys Compd. 694, 119–123 (2017)CrossRefGoogle Scholar
  45. 45.
    Y. Li, J. Zhang, W. Lv, X. Luo, L. Sun, J. Zhong, F. Zhao, F. Huang, Y. Peng, Synth. Met. 205, 190 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • B. Hemanth Kumar
    • 1
  • S. Shaji
    • 2
  • M. C. Santhosh Kumar
    • 1
    Email author
  1. 1.Optoelectronic Materials and Devices Laboratory, Department of PhysicsNational Institute of TechnologyTiruchirappalliIndia
  2. 2.Faculty of Mechanical and Electrical EngineeringUniversidad Autonoma de Nuevo Leon, Av. Universidad s/n, University City, Nuevo LeónSan Nicolas De Los GarzaMexico

Personalised recommendations