Effect of dispersion on visible light transmittance and resistivity of indium tin oxide nanoparticles prepared by cetyltrimethylammonium bromide-assisted coprecipitation method

  • Yunqian Ma
  • Fei Liang
  • Youxing Liu
  • Xiaoyu Zhai
  • Jiaxiang LiuEmail author


A new strategy for decreasing resistivity while increasing visible light transmission of indium tin oxide nanoparticles (ITO NPs) was reported in this paper. Cubic phase ITO NPs with high dispersion were synthesized by coprecipitation method with cetyltrimethylammonium bromide (CTAB) assisted. The effects of dispersion on the optical and electrical properties of ITO NPs were investigated systematically. Surface potential of ITO NPs synthesized with 1.5 g/L of CTAB was increased from − 4.5 to 13.0 mV, resulting in an increase in visible light transmittance of ITO NPs from 70 to 92% and a decrease in resistivity from 6.5 × 10−1 to 3.5 × 10−1 Ω cm. The fitting equation between the visible light transmittance (T) of ITO NP and its absolute value of Zeta potential (μ) was \(T = 60.862 + 2.287 \mu\), while the fitting equation of its resistivity (ρ) and absolute value of Zeta potential (μ) was \(\rho = 0.7968 - 0.0350 \mu\). This result showed that the dispersion of ITO NPs had a great contribution to improving their optical and electrical properties. And the mechanism of the influence of dispersion on optical and electrical properties of ITO NPs was also discussed.



This work was financially supported by Beijing Natural Science Foundation (No. 2192041).

Compliance with ethical standards

Conflicts of interest

There are no conflicts of interest to declare.


  1. 1.
    G. Genesio, J. Maynadie, M. Carboni, D. Meyer, New J. Chem. 42, 2351–2363 (2018)CrossRefGoogle Scholar
  2. 2.
    S. Yang, J. Zhong, B. Sun, X. Zeng, W. Luo, X. Zhao, Y. Shu, J. Chen, J. He, J. Mater. Sci.: Mater. Electron. 30, 13005–13012 (2019)Google Scholar
  3. 3.
    A. Murali, H.Y. Sohn, Mater. Res. Express 5, 065045 (2018)CrossRefGoogle Scholar
  4. 4.
    Y. Yan, Y. Wei, C. Zhao, M. Shi, L. Chen, C. Fan, M.J. Carnie, R. Yang, Y. Xu, J. Solid State Chem. 269, 24–29 (2019)CrossRefGoogle Scholar
  5. 5.
    Y. Shao, X. Xiao, L. Wang, Y. Liu, S. Zhang, Adv. Funct. Mater. 24, 4170–4175 (2014)CrossRefGoogle Scholar
  6. 6.
    A. Dolgonos, T.O. Mason, K.R. Poeppelmeier, J. Solid State Chem. 240, 43–48 (2016)CrossRefGoogle Scholar
  7. 7.
    Y. Luo, Y. Zhang, J. Huang, CrystEngComm 19, 6972–6978 (2017)CrossRefGoogle Scholar
  8. 8.
    C. Sun, C.H. Cheng, B.L. Zhang, R.X. Li, Y. Wang, W.F. Liu, Y.M. Luo, G.T. Du, S.L. Cong, Appl. Surf. Sci. 422, 125–129 (2017)CrossRefGoogle Scholar
  9. 9.
    E.B. Aydin, M.K. Sezginturk, Trac-Trends Anal. Chem. 97, 309–315 (2017)CrossRefGoogle Scholar
  10. 10.
    B.C. Yadav, K. Agrahari, S. Singh, T.P. Yadav, J. Mater. Sci.: Mater. Electron. 27, 4172–4179 (2016)Google Scholar
  11. 11.
    O.V. Zhilova, S.Y. Pankov, A.V. Sitnikov, Y.E. Kalinin, M.N. Volochaev, V.A. Makagonov, J. Mater. Sci.: Mater. Electron. 30, 11859–11867 (2019)Google Scholar
  12. 12.
    S.J. Shih, Y.C. Lin, S.H. Lin, P. Veteska, D. Galusek, W.H. Tuan, Ceram. Int. 42, 11324–11329 (2016)CrossRefGoogle Scholar
  13. 13.
    R.R. Kumar, K.N. Rao, K. Rajanna, A.R. Phani, Mater. Res. Bull. 52, 167–176 (2014)CrossRefGoogle Scholar
  14. 14.
    T. Ito, H. Uchiyama, H. Kozuka, Langmuir 33, 5314–5320 (2017)CrossRefGoogle Scholar
  15. 15.
    S. Khalid, E. Ahmed, M.A. Malik, D.J. Lewis, S.A. Bakar, Y. Khan, P. Brien, New J. Chem. 39, 1013–1021 (2015)CrossRefGoogle Scholar
  16. 16.
    C.J. Capozzi, R.A. Gerhardt, Adv. Funct. Mater. 17, 2515–2521 (2007)CrossRefGoogle Scholar
  17. 17.
    C. Kim, Y.H. Kim, Y.Y. Noh, S.J. Hong, M.J. Lee, Adv. Electron. Mater. 4, 1700429 (2018)CrossRefGoogle Scholar
  18. 18.
    A.H. Ali, A.S. Bakar, Z. Hassan, Appl. Surf. Sci. 315, 387–391 (2014)CrossRefGoogle Scholar
  19. 19.
    C. David, B.P. Tinkham, P. Prunici, A. Panckow, Surf. Coat. Technol. 314, 113–117 (2016)CrossRefGoogle Scholar
  20. 20.
    H. Zhang, C. Nie, J. Wang, R. Guan, D. Cao, Talanta 195, 713–719 (2019)CrossRefGoogle Scholar
  21. 21.
    E. Ye, S.Y. Zhang, S.H. Lim, S. Liu, M.Y. Han, Phys. Chem. Chem. Phys. 12, 11923–11929 (2010)CrossRefGoogle Scholar
  22. 22.
    X. Zhai, Y. Chen, Y. Ma, Y. Liu, J. Liu, Ceram. Int. (2019). Google Scholar
  23. 23.
    S.C. Kulkarni, D.S. Patil, J. Mater. Sci.: Mater. Electron. 27, 3731–3735 (2016)Google Scholar
  24. 24.
    Y. Yu, S. Qu, D. Zang, L. Wang, H. Wu, Nanoscale Res. Lett. 13, 50 (2018)CrossRefGoogle Scholar
  25. 25.
    G.G. Xu, X.D. Zhang, W. He, H. Liu, H. Li, R.I. Boughton, Mater. Lett. 60, 962–965 (2006)CrossRefGoogle Scholar
  26. 26.
    Y.Q. Zhang, J.X. Liu, Chin. J. Inorg. Chem. 33, 249–254 (2017)Google Scholar
  27. 27.
    D. Lan, M. Qin, R. Yang, H. Wu, Z. Jia, K. Kou, G. Wu, Y. Fan, Q. Fu, F. Zhang, J. Mater. Sci.: Mater. Electron. 30, 8771–8776 (2019)Google Scholar
  28. 28.
    T.I. Zubar, V.M. Fedosyuk, A.V. Trukhanov, N.N. Kovaleva, K.A. Astapovich, D.A. Vinnik, E.L. Trukhanova, A.L. Kozlovskiy, M.V. Zdorovets, A.A. Solobai, D.I. Tishkevich, S.V. Trukhanov, J. Electrochem. Soc. 166, D173–D180 (2019)CrossRefGoogle Scholar
  29. 29.
    Y. Masuda, T. Ohji, K. Kato, J. Solid State Chem. 189, 21–24 (2012)CrossRefGoogle Scholar
  30. 30.
    F. Mei, T. Yuan, R. Li, K. Qin, W. Zhao, S. Jiang, Ceram. Int. 44, 7491–7499 (2018)CrossRefGoogle Scholar
  31. 31.
    H. Wu, G. Wu, Y. Ren, X. Li, L. Wang, Chemistry A 22, 8864–8871 (2016)Google Scholar
  32. 32.
    D. Selvakumar, N. Dharmaraj, K. Kadirvelu, N.S. Kumar, V.C. Padaki, Spectrochimica Acta Part A 133, 335–339 (2014)CrossRefGoogle Scholar
  33. 33.
    L.T. Lin, L. Tang, R. Zhang, C. Deng, D.J. Chen, L.W. Cao, J.-X. Meng, Mater. Res. Bull. 64, 139–145 (2015)CrossRefGoogle Scholar
  34. 34.
    Y. Liu, J. Liu, Mater. Res. Express 6 (2019)Google Scholar
  35. 35.
    B. Warcholinski, A. Gilewicz, T.A. Kuznetsova, T.I. Zubar, S.A. Chizhik, S.O. Abetkovskaia, V.A. Lapitskaya, Surf. Coat. Technol. 319, 117–128 (2017)CrossRefGoogle Scholar
  36. 36.
    Z. Chen, X. Qin, T. Zhou, X. Wu, S. Shao, M. Xie, Z. Cui, J. Mater. Chem. C 3, 11464–11470 (2015)CrossRefGoogle Scholar
  37. 37.
    J. Parra Barranco, F.J. Garcia Garcia, V. Rico, A. Borras, C. Lopez Santos, F. Frutos, A. Barranco, A.R. Gonzalez Elipe, Acs Appl. Mater. Interfaces 7, 10993–11001 (2015)CrossRefGoogle Scholar
  38. 38.
    H.N. Cui, V. Teixeira, A. Monteiro, Vacuum 67, 589–594 (2002)CrossRefGoogle Scholar
  39. 39.
    M. Gross, A. Winnacker, P.J. Wellmann, Thin Solid Films 515, 8567–8572 (2007)CrossRefGoogle Scholar
  40. 40.
    B. Sasi, K.G. Gopchandran, P.K. Manoj, P. Koshy, P. Prabhakara Rao, V.K. Vaidyan, Vacuum 68, 149–154 (2002)CrossRefGoogle Scholar
  41. 41.
    W.F. Cai, J.F. Geng, K.B. Pu, Q. Ma, D.W. Jing, Y.H. Wang, Q.Y. Chen, H. Liu, Chem. Eng. J. 333, 572–582 (2018)CrossRefGoogle Scholar
  42. 42.
    Y. Zhang, J. Liu, Chem. J. Chin. Univ. Chin. 38, 1110–1116 (2017)Google Scholar
  43. 43.
    V. Senthilkumar, K. Senthil, P. Vickraman, Mater. Res. Bull. 47, 1051–1056 (2012)CrossRefGoogle Scholar
  44. 44.
    B. Shong, N. Shin, Y.H. Lee, K.H. Ahn, Y.W. Lee, J. Supercrit. Fluids 113, 39–43 (2016)CrossRefGoogle Scholar
  45. 45.
    X. Zhang, J. Liu, Rare Met. Mater. Eng. 46, 1714–1718 (2017)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.The Beijing Key Laboratory of Electrochemical Process and Technology for MaterialsBeijing University of Chemical TechnologyBeijingPeople’s Republic of China
  2. 2.National Center for Nanoscience and TechnologyBeijingPeople’s Republic of China
  3. 3.Institute of Chemistry Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations