Enhanced photocatalytic reduction activity of BiOCl nanosheets loaded on β-Bi2O3

  • Jun ShangEmail author
  • Huige Chen
  • Bing Zhao
  • Fei Zhou
  • Hao Zhang
  • Xianwei WangEmail author


BiOCl nanosheets were loaded on the surface of β-Bi2O3 and its photocatalytic reduction activity was investigated. The composite displays excellent photocatalytic reduction activity. The NH3 yield rate of β-Bi2O3/BiOCl composite is nearly 25 times as that of pure BiOCl under Xenon lamp irradiation. The β-Bi2O3/BiOCl heterojunction presents superior photocatalytic reduction activity for the degradation of Cr(VI) ions, and Cr(VI) ions are totally removed in 18 min. The results of photocurrent and electrochemical impedance spectroscopy measurements reveal that the formation of β-Bi2O3/BiOCl heterojunction contributes to reduce the recombination of the photogenerated electrons and holes. The process of photocatalytic reduction activity over composite is explained by Z-scheme mechanism.



This work was supported by the Foundation of Henan Educational Committee (No. 19A140010), Science and Technique Program of Henan Province (No. 182102210375) and Youth Foundation of Henan Normal University (No. XJ20190109).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    H.L. Wang, L.S. Zhang, Z.G. Chen, J.Q. Hu, S.J. Li, Z.H. Wang, J.S. Liu, X.C. Wang, Chem. Soc. Rev. 43, 5234 (2014)CrossRefGoogle Scholar
  2. 2.
    G.Q. Zhang, X.W. Lou, Sci. Rep. 3, 1470 (2013)CrossRefGoogle Scholar
  3. 3.
    T.F. Zhou, J.C. Hu, Environ. Sci. Technol. 44, 8698 (2010)CrossRefGoogle Scholar
  4. 4.
    T.F. Zhou, W.K. Pang, C.F. Zhang, J.P. Yang, Z.X. Chen, H.K. Liu, Z.P. Guo, ACS Nano 8, 8323 (2014)CrossRefGoogle Scholar
  5. 5.
    O. Legrini, E. Oliveros, A.M. Braun, Chem. Rev. 93, 671 (1993)CrossRefGoogle Scholar
  6. 6.
    T. Inoue, A. Fujishima, S. Konishi, K. Honda, Nature 277, 637 (1979)CrossRefGoogle Scholar
  7. 7.
    Q. Liu, Y. Zhou, J.H. Kou, X.Y. Chen, Z.P. Tian, J. Gao, S.C. Yan, Z.G. Zou, J. Am. Chem. Soc. 132, 14385 (2010)CrossRefGoogle Scholar
  8. 8.
    J. Shang, T.Z. Chen, G. Huang, F. Zhou, X.W. Wang, L.Y. Sun, J. Mater. Sci. 29, 18067 (2018)Google Scholar
  9. 9.
    M.C. Gao, D.F. Zhang, X.P. Pu, M.T. Li, Y.M. Yu, J.J. Shim, P.Q. Cai, S.I. Kim, H.J. Seo, J. Am. Ceram. Soc. 98, 1519 (2015)Google Scholar
  10. 10.
    J. Shang, H.G. Chen, T.Z. Chen, X.W. Wang, G. Feng, M.W. Zhu, Y.X. Yang, X.S. Jia, Appl. Phys. A 125, 133 (2019)CrossRefGoogle Scholar
  11. 11.
    A. Etogo, E.L. Hu, C.M. Zhou, Y.J. Zhong, H. Yong, Z.L. Hong, J. Mater. Chem. A 3, 22413 (2015)CrossRefGoogle Scholar
  12. 12.
    H. Gnayem, Y. Sasson, ACS Catal. 3, 186 (2013)CrossRefGoogle Scholar
  13. 13.
    S.Q. Han, J. Li, K.L. Yang, J. Lin, Chin. J. Catal. 36, 2119 (2015)CrossRefGoogle Scholar
  14. 14.
    G.Q. Zhu, W.X. Que, J. Zhang, J. Alloys Compd. 509, 9479 (2011)CrossRefGoogle Scholar
  15. 15.
    H.F. Cheng, B.B. Huang, J.B. Lu, Z.Y. Wang, B. Xu, X.Y. Qin, X.Y. Zhang, Y. Dai, Phys. Chem. Chem. Phys. 12, 15468 (2010)CrossRefGoogle Scholar
  16. 16.
    X.D. Tang, Z.R. Wang, N. Wu, S.L. Liu, N. Liu, Catal. Commun. 119, 119 (2019)CrossRefGoogle Scholar
  17. 17.
    G.Y. Cai, L.L. Xu, B. Wei, J.X. Che, H. Gao, W.J. Sun, Mater. Lett. 120, 1 (2014)CrossRefGoogle Scholar
  18. 18.
    Y. Lu, Y. Zhao, J.Z. Zhao, Y.H. Song, Z.F. Huang, F.F. Gao, N. Li, Y.W. Li, Cryst. Growth Des. 15, 1031 (2015)CrossRefGoogle Scholar
  19. 19.
    X.D. Tang, C.S. Ma, N. Liu, C.L. Liu, S.L. Liu, Chem. Phys. Lett. 709, 82 (2018)CrossRefGoogle Scholar
  20. 20.
    W. Zou, W.C. Hao, X. Xin, T.M. Wang, Chin. J. Inorg. Chem. 25, 1971 (2009)Google Scholar
  21. 21.
    G.P. He, C.L. Xing, X. Xiao, R.P. Hu, X.X. Zou, J.M. Nan, Appl. Catal. B 170, 1 (2015)Google Scholar
  22. 22.
    X. Shi, P.Q. Wang, L. Wang, Y. Bai, H.Q. Xie, Y. Zhou, J.A. Wang, Z.J. Li, L.B. Qu, M.J. Shi, L.Q. Ye, ACS Sustain. Chem. Eng. 6, 13739 (2018)CrossRefGoogle Scholar
  23. 23.
    L.H. Yu, Y.Y. Zhang, G.W. Li, Y.T. Cao, Y. Shao, D.Z. Li, Appl. Catal. B 187, 301 (2016)CrossRefGoogle Scholar
  24. 24.
    L. Wang, J. Shang, W.C. Hao, S.Q. Jiang, S.H. Huang, T.M. Wang, Z.Q. Sun, Y. Du, S.X. Dou, T.F. Xie, D.J. Wang, J.O. Wang, Sci. Rep. 4, 7384 (2014)CrossRefGoogle Scholar
  25. 25.
    M.A. Bulter, J. Appl. Phys. 48, 1914 (1977)CrossRefGoogle Scholar
  26. 26.
    Y. Xu, M.A.A. Schoonen, Am. Miner. 85, 543 (2000)CrossRefGoogle Scholar
  27. 27.
    H.J. Li, Y. Zhou, W.G. Tu, J.H. Ye, Z.G. Zou, Adv. Funct. Mater. 25, 998 (2015)CrossRefGoogle Scholar
  28. 28.
    H. Wang, Y. Su, H.X. Zhao, H.T. Yu, S. Chen, Y.B. Zhang, X. Quan, Environ. Sci. Technol. 48, 11984 (2014)CrossRefGoogle Scholar
  29. 29.
    J.G. Yu, S.H. Wang, J.X. Low, W. Xia, Phys. Chem. Chem. Phys. 15, 16883 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.National Demonstration Center for Experimental Physics EducationHenan Normal UniversityXinxiangChina
  2. 2.College of Physics and Materials ScienceHenan Normal UniversityXinxiangChina
  3. 3.Henan Key Laboratory of Photovoltaic MaterialsXinxiangChina

Personalised recommendations