Advertisement

Effect of sulfurization process on the properties of solution-processed Cu2SnS3 thin film solar cells

  • Yun Zhao
  • Xiuxun HanEmail author
  • Bin Xu
  • Chen Dong
  • Junshuai Li
  • Xingbin YanEmail author
Article
  • 21 Downloads

Abstract

Cu2SnS3 (CTS) based thin film solar cells were successfully fabricated through a facile solution processes followed by a post-sulfurization treatment. The influence of sulfurization temperature and time on the structural, compositional, morphological, optical and also the electrical properties of the solar cells were systematically studied. The results showed that the CTS thin films sulfurized at 580 °C would be a void-free and densely packed absorber layer with the grain size to be microns, having the band gap of ~ 1.01 eV. Furthermore, the sulfurization time is the key factor to influence the electronic properties of CTS absorber layer, and thus resulting in the best device performance of PCE = 2.41% by 20 min sulfurization process.

Notes

Acknowledgements

National Natural Science Foundation of China (Grant No. 51702328) and West Light Foundation of The Chinese Academy of Sciences (CAS).

References

  1. 1.
    T.K. Todorov, K.B. Reuter, D.B. Mitzi, High-efficiency solar cell with earth-abundant liquid-processed absorber. Adv. Mater. 22, E156–E159 (2010)CrossRefGoogle Scholar
  2. 2.
    Q. Guo, G.M. Ford, W.C. Yang, B.C. Walker, E.A. Stach, H.W. Hillhouse, R. Agrawal, Fabrication of 7.2% efficient CZTSSe solar cells using CZTS nanocrystals. J. Am. Chem. Soc. 132, 17384–17386 (2010)CrossRefGoogle Scholar
  3. 3.
    A. Walsh, S. Chen, S.H. Wei, X.G. Gong, Kesterite thin-film solar cells: advances in materials modelling of Cu2ZnSnS4. Adv. Energy Mater. 2, 400–409 (2012)CrossRefGoogle Scholar
  4. 4.
    J. Li, D. Wang, X. Li, Y. Zeng, Y. Zhang, Cation substitution in earth-abundant kesterite photovoltaic materials. Adv. Sci. 5, 1700744 (2018)CrossRefGoogle Scholar
  5. 5.
    W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, D.B. Mitzi, Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Adv. Energy Mater. 4, 1301465 (2014)CrossRefGoogle Scholar
  6. 6.
    H. Katagiri, K. Jimbo, W.S. Maw, K. Oishi, M. Yamazaki, H. Araki, A. Takeuchi, Development of CZTS-based thin film solar cells. Thin Solid Films 517, 2455–2460 (2009)CrossRefGoogle Scholar
  7. 7.
    D. Wang, W. Zhao, Y. Zhang, S. Liu, Path towards high-efficient kesterite solar cells. J. Energy Chem. 27, 1040–1053 (2018)CrossRefGoogle Scholar
  8. 8.
    P. Zawadzki, L.L. Baranowski, H. Peng, E.S. Toberer, D.S. Ginley, W. Tumas, A. Zakutayev, S. Lany, Evaluation of photovoltaic materials with in the Cu-Sn-S family. Appl. Phys. Lett. 103, 253902 (2013)CrossRefGoogle Scholar
  9. 9.
    R. Chierchia, F. Pigna, M. Valentini, C. Malerba, E. Salza, P. Mangiapane, T. Polichetti, A. Mittig, Cu2SnS3 based solar cell with 3% efficiency. Phys. Status Solidi C 13, 35–39 (2016)CrossRefGoogle Scholar
  10. 10.
    P.A. Fernandes, P.M.P. Salome, A.F. da Cunha, A study of ternary Cu2SnS3 and Cu3SnS4 thin films prepared by sulfurizing stacked metal precursors. J. Phys. D 43, 215403 (2010)CrossRefGoogle Scholar
  11. 11.
    H. Zhang, M. Xie, S. Zhang, Y. Xiang, Fabrication of highly crystallized Cu2SnS3 thin films through sulfurization of Sn-rich metallic precursors. J. Alloys Compd. 602, 199–203 (2014)CrossRefGoogle Scholar
  12. 12.
    S. Sato, H. Sumi, G. Shi, M. Sugiyama, Investigation of the sulfurization process of Cu2SnS3 thin films and estimation of band offsets of Cu2SnS3-related solar cell structure. Phys. Status Solidi C 12, 757–760 (2015)CrossRefGoogle Scholar
  13. 13.
    D. Avellaneda, M.T.S. Nair, P.K. Nair, Cu2SnS3 and Cu4SnS4 thin films via chemical deposition for photovoltaic application. J. Electrochem. Soc. 157, D346–D352 (2010)CrossRefGoogle Scholar
  14. 14.
    Y. Dong, J. He, L. Sun, Y. Chen, P. Yang, J. Chu, Effect of sulfurization temperature on properties of Cu2SnS3 thin films and solar cells prepared by sulfurization of stacked metallic precursors. Mater. Sci. Semicond. Process. 38, 171–176 (2015)CrossRefGoogle Scholar
  15. 15.
    T.S. Reddy, R. Amiruddin, M.C.S. Kumar, Deposition and characterization of Cu2SnS3 thin films by co-evaporation for photovoltaic application. Sol. Energy Mater. Sol. Cells 143, 128–134 (2015)CrossRefGoogle Scholar
  16. 16.
    M. Nakashima, J. Fujimoto, T. Yamaguchi, M. Izaki, Cu2SnS3 thin-film solar cells fabricated by sulfurization from NaF/Cu/Sn stacked precursor. Appl. Phys. Express 8, 042303 (2015)CrossRefGoogle Scholar
  17. 17.
    A. Kanai, K. Toyonaga, K. Chino, H. Katagiri, H. Araki, Fabrication of Cu2SnS3 thin-film solar cells with power conversion efficiency of over 4%. Jpn. J. Appl. Phys. 54, 08KC06 (2015)CrossRefGoogle Scholar
  18. 18.
    S.A. Vanalakar, G.L. Agawane, A.S. Kamble, C.W. Hong, P.S. Patil, J.H. Kim, Fabrication of Cu2SnS3 thin film solar cells using pulsed laser deposition technique. Sol. Energy Mater. Sol. Cells 138, 1–8 (2015)CrossRefGoogle Scholar
  19. 19.
    D. Tiwari, T.K. Chaudhuri, T. Shripathi, U. Deshpande, R. Rawat, Non-toxic, earth-abundant 2% efficient Cu2SnS3 solar cell based on tetragonal films direct-coated from single metal-organic precursor solution. Sol. Energy Mater. Sol. Cells 113, 165–170 (2013)CrossRefGoogle Scholar
  20. 20.
    Z. Jia, Q. Chen, J. Chen, T. Wang, Z. Li, X. Dou, The photovoltaic properties of novel narrow band gap Cu2SnS3 films prepared by a spray pyrolysis method. RSC Adv. 5, 28885 (2015)CrossRefGoogle Scholar
  21. 21.
    J. Li, C. Xue, Y. Wang, G. Jiang, W. Liu, C. Zhu, Cu2SnS3 solar cells fabricated by chemical bath deposition-annealing of SnS/Cu stacked layers. Sol. Energy Mater. Sol. Cells 144, 281–288 (2016)CrossRefGoogle Scholar
  22. 22.
    S. YaŞar, S. Kahraman, S. Çtinkaya, Ì. Bilican, Improved characteristics for chemically grown Cu2SnS3 promising solar absorbers through the use of TritonX-100® surfactant. J. Alloys Compd. 618, 217–221 (2015)CrossRefGoogle Scholar
  23. 23.
    J. Li, J. Huang, Y. Zhang, Y. Wang, C. Xue, G. Jiang, W. Liu, C. Zhu, Solution-processed Cu2SnS3 thin film solar cells. RSC Adv. 6, 58786 (2016)CrossRefGoogle Scholar
  24. 24.
    S. Dias, B. Murali, S.B. Krupanidhi, Transport properties of solution processed Cu2SnS3/AZnO hetero-structure for low cost photovoltaics. Sol. Energy Mater. Sol. Cells 143, 152–158 (2015)CrossRefGoogle Scholar
  25. 25.
    J. Chantana, K. Suzuki, T. Minemoto, Introduction of Na into Cu2SnS3 thin film for improvement of its photovoltaic performances. Sol. Energy Mater. Sol. Cells 168, 207–213 (2017)CrossRefGoogle Scholar
  26. 26.
    M. Umehara, Y. Takeda, T. Motohiro, T. Sakai, H. Awano, R. Maekawa, Cu2Sn1-xGexS3 (x = 0.17) thin-film solar cells with high conversion efficiency of 60%. Appl. Phys. Express 6, 045501 (2013)CrossRefGoogle Scholar
  27. 27.
    S.M. McLeod, C.J. Hages, N.J. Carter, R. Agrawal, Synthesis and characterization of 15% efficient CIGSSe solar cells from nanoparticle inks. Prog. Photovolt. 23, 1550–1556 (2015)CrossRefGoogle Scholar
  28. 28.
    D. Tiwari, T. Koehler, R. Klenk, D.J. Fermin, Solution processed single-phase Cu2SnS3 films: structure and photovoltaic performance. Sustain. Energy Fuels 1, 899–906 (2017)CrossRefGoogle Scholar
  29. 29.
    M.P. Suryawanshi, U.V. Ghorpade, S.W. Shin, S.A. Pawar, I.Y. Kim, C.W. Hong, M. Wu, P.S. Patil, A.V. Moholkar, J.H. Kim, A simple aqueous precursor solution processing of earth-abundant Cu2SnS3 absorbers for thin-film solar cells. ACS Appl. Mater. Interfaces. 8, 11603–11614 (2016)CrossRefGoogle Scholar
  30. 30.
    B. Xu, Y. Zhao, A. Sun, Y. Li, W. Li, X. Han, Direct solution coating of pure-phase Cu2SnS3 thin films without sulfurization. J. Mater. Sci. 28, 3481–3486 (2017)Google Scholar
  31. 31.
    D.M. Berg, R. Djemour, L. Gütay, S. Siebentritt, P.J. Dale, X. Fontane, V. Izquierdo-Roca, A. Pérez-Rodriguez, Raman analysis of monoclinic Cu2SnS3 thin films. Appl. Phys. Lett. 100, 192103 (2012)CrossRefGoogle Scholar
  32. 32.
    A.J. Cheng, M. Manno, A. Khare, C. Leighton, S.A. Campbell, E.S. Aydil, Imaging and phase identification of Cu2ZnSnS4 thin films using confocal Raman spectroscopy. J. Vac. Sci. Technol., A 29, 051203 (2011)CrossRefGoogle Scholar
  33. 33.
    H. Xie, Y. Sánchez, S. López-Marino, M. Espíndola-Rodríguez, M. Neuschitzer, D. Sylla, A. Fairbrother, V. Izquierdo-Roca, A. Pérez-Rodríguez, E. Saucedo, Impact of Sn(S, Se) secondary phases in Cu2ZnSn(S, Se)4 solar cells: a chemical route for their selective removal and absorber surface passivation. ACS Appl. Mater. Interfaces. 6, 12744–12751 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Clean Energy Chemistry and Materials, Lanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhouPeople’s Republic of China
  2. 2.Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijingPeople’s Republic of China
  3. 3.Institute of Engineering ResearchJiangxi University of Science and TechnologyGanzhouPeople’s Republic of China
  4. 4.School of Physical Science & Technology and Key Laboratory of Special Function Materials & Structure Design of the Ministry of EducationLanzhou UniversityLanzhouPeople’s Republic of China

Personalised recommendations