Advertisement

Highly efficient, visible active TiO2/CdS/ZnS photocatalyst, study of activity in an ultra low energy consumption LED based photo reactor

  • Anuj Mittal
  • Shankar Sharma
  • Vijaya Kumari
  • Suprabha Yadav
  • Nar Singh Chauhan
  • Naveen KumarEmail author
Article
  • 10 Downloads

Abstract

Nano Titania is the promising material for the photocatalytic process used in the minimization of the organic pollutant. However, there is need to enhance its absorption and surface properties to design a material having high efficacy. In this study, we report the synthesis of binary and ternary TiO2 nano-composites using the CdS and ZnS nanoparticles by adopting the low temperature two-step hydrothermal approach. The synthesized materials were characterized by using XRD, UV-DRS, FESEM, HRTEM, XPS and BET surface area analyzer. The photocatalytic activity was evaluated by taking the Rhodamine B (RhB) as model pollutant by employing an ultra low LED photo reactor. It was found that, the ternary TiO2/CdS/ZnS composite containing 10% ZnS and 20% CdS in wt. ratio showed the best activity towards the removal of RhB. The enhanced activity was due to improvement in the absorbance in the visible region and formation of heterojunction, which enhanced the lifetime of photoinduced charged species by the reduction in charge recombination. Reactive species, prominently responsible for degradation was identified by the scavenger action. The degradation pathway by which the RhB degraded is also discussed and found that degradation pathway altered with pH of solution.

Notes

Acknowledgements

AM and NK are highly thankful to Council for Scientific and Industrial Research, New Delhi and Maharshi Dayanand University, Rohtak respectively for the financial support. The authors are thankful to Materials Research center, MNIT Jaipur, India for HRTEM analysis.

References

  1. 1.
    K. Melghit, K. Bouziane, J. Alloys Compd. 453, 102 (2008)CrossRefGoogle Scholar
  2. 2.
    N. Kumar, N.S. Chauhan, A. Mittal, S. Sharma, Biometals 31, 147 (2018)CrossRefGoogle Scholar
  3. 3.
    A. Mittal, B. Mari, S. Sharma, V. Kumari, S. Maken, K. Kumari, N. Kumar, J. Mater. Sci.: Mater. Electron. 30, 3186 (2019)Google Scholar
  4. 4.
    N. Serpone, P. Maruthamuthu, P. Pichat, E. Pelizzetti, H. Hidaka, J. Photochem. Photobiol. A 85, 247 (1995)CrossRefGoogle Scholar
  5. 5.
    Y. Jin-nouchi, S. Naya, H. Tada, J. Phys. Chem. C 114, 16837 (2010)CrossRefGoogle Scholar
  6. 6.
    R. Wang, D. Xu, J. Liu, K. Li, H. Wang, Chem. Eng. J. 168, 455 (2011)CrossRefGoogle Scholar
  7. 7.
    V. Kumari, A. Mittal, J. Jindal, S. Yadav, N. Kumar, Front. Mater. Sci. 13, 1 (2019)CrossRefGoogle Scholar
  8. 8.
    N. Verma, S. Yadav, B. Marí, A. Mittal, J. Jindal, Trans. Indian Ceram. Soc. 77, 1 (2018)CrossRefGoogle Scholar
  9. 9.
    A. Umar, M.S. Akhtar, A. Al-Hajry, M.S. Al-Assiri, G.N. Dar, M. Saif Islam, Chem. Eng. J. 262, 588 (2015)CrossRefGoogle Scholar
  10. 10.
    S. Kalathil, M.M. Khan, S.A. Ansari, J. Lee, M.H. Cho, Nanoscale 5, 6323 (2013)CrossRefGoogle Scholar
  11. 11.
    M.M. Khan, S.A. Ansari, D. Pradhan, M.O. Ansari, D.H. Han, J. Lee, M.H. Cho, J. Mater. Chem. A 2, 637 (2013)CrossRefGoogle Scholar
  12. 12.
    M.M. Khan, S.A. Ansari, D. Pradhan, D.H. Han, J. Lee, M.H. Cho, Ind. Eng. Chem. Res. 53, 9754 (2014)CrossRefGoogle Scholar
  13. 13.
    R. Asahi, T. Morikawa, H. Irie, T. Ohwaki, Chem. Rev. 114, 9824 (2014)CrossRefGoogle Scholar
  14. 14.
    M. Grätzel, J. Photochem. Photobiol. C Photochem. Rev. 4, 145 (2003)CrossRefGoogle Scholar
  15. 15.
    S. Qian, C. Wang, W. Liu, Y. Zhu, W. Yao, X. Lu, J. Mater. Chem. 21, 4945 (2011)CrossRefGoogle Scholar
  16. 16.
    A.M. Roy, G.C. De, J. Photochem. Photobiol. A 157, 87 (2003)CrossRefGoogle Scholar
  17. 17.
    X. Zhang, Y. Wang, B. Liu, Y. Sang, H. Liu, Appl. Catal. B 202, 620 (2017)CrossRefGoogle Scholar
  18. 18.
    D. Zhao, C.-F. Yang, Renew. Sustain. Energy Rev. 54, 1048 (2016)CrossRefGoogle Scholar
  19. 19.
    M. Zubair, I.-H. Svenum, M. Rønning, J. Yang, Catal. Today 328, 15 (2019)CrossRefGoogle Scholar
  20. 20.
    X. Guo, C. Chen, W. Song, X. Wang, W. Di, W. Qin, J. Mol. Catal. A 387, 1 (2014)CrossRefGoogle Scholar
  21. 21.
    L. Zhu, Z. Meng, K. Cho, W. Oh, New Carbon Mater. 27, 166 (2012)CrossRefGoogle Scholar
  22. 22.
    S.M.H. Al-Jawad, Mater. Sci. Semicond. Process. 67, 75 (2017)CrossRefGoogle Scholar
  23. 23.
    S.S.M. Bhat, S.A. Pawar, D. Potphode, C.-K. Moon, J.M. Suh, C. Kim, S. Choi, D.S. Patil, J.-J. Kim, J.C. Shin, H.W. Jang, Appl. Catal. B (2019).  https://doi.org/10.1016/j.apcatb.2019.118102 Google Scholar
  24. 24.
    W. Li, D. Li, S. Meng, W. Chen, X. Fu, Y. Shao, Environ. Sci. Technol. 45, 2987 (2011)CrossRefGoogle Scholar
  25. 25.
    K. Li, S. Gao, Q. Wang, H. Xu, Z. Wang, B. Huang, Y. Dai, J. Lu, A.C.S. Appl, Mater. Interfaces 7, 9023 (2015)CrossRefGoogle Scholar
  26. 26.
    K. Natarajan, H.C. Bajaj, R.J. Tayade, J. Ind. Eng. Chem. 34, 146 (2016)CrossRefGoogle Scholar
  27. 27.
    S. Xie, K. Ouyang, X. Ma, Ceram. Int. 40, 12353 (2014)CrossRefGoogle Scholar
  28. 28.
    H. Zhao, Y. Dong, P. Jiang, G. Wang, J. Zhang, A.C.S. Appl, Mater. Interfaces 7, 6451 (2015)CrossRefGoogle Scholar
  29. 29.
    G. Dai, J. Yu, G. Liu, J. Phys. Chem. C 115, 7339 (2011)CrossRefGoogle Scholar
  30. 30.
    S. Liu, N. Zhang, Z.-R. Tang, Y.-J. Xu, A.C.S. Appl, Mater. Interfaces 4, 6378 (2012)CrossRefGoogle Scholar
  31. 31.
    H.L. Meng, C. Cui, H.L. Shen, D.Y. Liang, Y.Z. Xue, P.G. Li, W.H. Tang, J. Alloys Compd. 527, 30 (2012)CrossRefGoogle Scholar
  32. 32.
    N. Soltani, E. Saion, W.M.M. Yunus, M. Erfani, M. Navasery, G. Bahmanrokh, K. Rezaee, Appl. Surf. Sci. 290, 440 (2014)CrossRefGoogle Scholar
  33. 33.
    X. Li, X. Chen, H. Niu, X. Han, T. Zhang, J. Liu, H. Lin, F. Qu, J. Colloid Interface Sci. 452, 89 (2015)CrossRefGoogle Scholar
  34. 34.
    Z.-R. Tang, X. Yin, Y. Zhang, Y.-J. Xu, Inorg. Chem. 52, 11758 (2013)CrossRefGoogle Scholar
  35. 35.
    X. Wang, X. Li, Int. J. Green Energy 13, 1201 (2016)CrossRefGoogle Scholar
  36. 36.
    J.-N. Nian, H. Teng, J. Phys. Chem. B 110, 4193 (2006)CrossRefGoogle Scholar
  37. 37.
    D. Wu, Z. Gao, F. Xu, J. Chang, S. Gao, K. Jiang, CrystEngComm 15, 516 (2012)CrossRefGoogle Scholar
  38. 38.
    Y.-C. Liang, N.-C. Xu, RSC Adv. 8, 22437 (2018)CrossRefGoogle Scholar
  39. 39.
    L. Li, L. Wang, T. Hu, W. Zhang, X. Zhang, X. Chen, J. Solid State Chem. 218, 81 (2014)CrossRefGoogle Scholar
  40. 40.
    A. Gadalla, M.S.A. El-Sadek and R. Hamood, 11 (n.d.)Google Scholar
  41. 41.
    N. Kashif, F. Ouyang, J. Environ. Sci. 21, 527 (2009)CrossRefGoogle Scholar
  42. 42.
    S. Hemmati Borji, S. Nasseri, A.H. Mahvi, R. Nabizadeh, A.H. Javadi, J. Environ. Health Sci. Eng. 12, 101 (2014)CrossRefGoogle Scholar
  43. 43.
    L. Wu, J.C. Yu, X. Fu, J. Mol. Catal. A 244, 25 (2006)CrossRefGoogle Scholar
  44. 44.
    D.P. Wang, H.C. Zeng, Chem. Mater. 21, 4811 (2009)CrossRefGoogle Scholar
  45. 45.
    N. Bao, L. Shen, T. Takata, K. Domen, A. Gupta, K. Yanagisawa, C.A. Grimes, J. Phys. Chem. C 111, 17527 (2007)CrossRefGoogle Scholar
  46. 46.
    S.B. Kokane, S.D. Sartale, K.G. Girija, Jagannath, R. Sasikala, Int. J. Hydrog. Energy 40, 13431 (2015)Google Scholar
  47. 47.
    H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, ACS Nano 4, 380 (2010)CrossRefGoogle Scholar
  48. 48.
    Y. Du, W. Ma, P. Liu, B. Zou, J. Ma, J. Hazard. Mater. 308, 58 (2016)CrossRefGoogle Scholar
  49. 49.
    K. Yu, S. Yang, H. He, C. Sun, C. Gu, Y. Ju, J. Phys. Chem. A 113, 10024 (2009)CrossRefGoogle Scholar
  50. 50.
    G. Liu, X. Li, J. Zhao, H. Hidaka, N. Serpone, Environ. Sci. Technol. 34, 3982 (2000)CrossRefGoogle Scholar
  51. 51.
    L.A. Pérez-Estrada, A. Agüera, M.D. Hernando, S. Malato, A.R. Fernández-Alba, Chemosphere 70, 2068 (2008)CrossRefGoogle Scholar
  52. 52.
    X. Hu, T. Mohamood, W. Ma, C. Chen, J. Zhao, J. Phys. Chem. B 110, 26012 (2006)CrossRefGoogle Scholar
  53. 53.
    O. Merka, V. Yarovyi, D.W. Bahnemann, M. Wark, J. Phys. Chem. C 115, 8014 (2011)CrossRefGoogle Scholar
  54. 54.
    M. Liu, J. Zheng, Q. Liu, S. Xu, M. Wu, Q. Xue, Z. Yan, H. Xiao, Z. Wei, H. Zhu, RSC Adv. 3, 9483 (2013)CrossRefGoogle Scholar
  55. 55.
    X. Li, T. Xia, C. Xu, J. Murowchick, X. Chen, Catal. Today 225, 64 (2014)CrossRefGoogle Scholar
  56. 56.
    G. Sun, C. Zhu, J. Zheng, B. Jiang, H. Yin, H. Wang, S. Qiu, J. Yuan, M. Wu, W. Wu, Q. Xue, Mater. Lett. 166, 113 (2016)CrossRefGoogle Scholar
  57. 57.
    A.B. Makama, A. Salmiaton, E.B. Saion, T.S.Y. Choong, N. Abdullah, Int. J. Photoenergy 2016, 1 (2016)CrossRefGoogle Scholar
  58. 58.
    S. Bai, H. Li, Y. Guan, S. Jiang, Appl. Surf. Sci. 257, 6406 (2011)CrossRefGoogle Scholar
  59. 59.
    C. Lin, Y. Song, L. Cao, S. Chen, J. Chin. Adv. Mater. Soc. 1, 188 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Anuj Mittal
    • 1
    • 2
  • Shankar Sharma
    • 1
    • 2
  • Vijaya Kumari
    • 1
  • Suprabha Yadav
    • 1
  • Nar Singh Chauhan
    • 2
  • Naveen Kumar
    • 1
    Email author
  1. 1.Department of ChemistryMaharshi Dayanand UniversityRohtakIndia
  2. 2.Department of Bio-ChemistryMaharshi Dayanand UniversityRohtakIndia

Personalised recommendations