Advertisement

Luminescence properties of double perovskite Gd2MgTiO6:Tb3+ phosphors by solid-state reaction method

  • Jinhui Xie
  • Nan Ding
  • Xibing Li
  • Wentao Huang
  • Huijie Yang
  • Jue Wang
  • Lixi WangEmail author
  • Qitu ZhangEmail author
Article
  • 4 Downloads

Abstract

A series of double perovskite (Gd1−xTbx)2MgTiO6 (x = 0.01, 0.05, 0.1, 0.15, 0.2, 0.3 and 0.4) phosphors were successfully synthesized by solid-state reaction method. The A-site in the host is occupied by two Gd3+ ions, which facilitates the doping of Tb3+ ions. The crystal structure, morphology and luminescence performance were evaluated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, photoluminescence and calculation of CIE color coordinates. A weak emission peak (5D47F6, 490 nm) and a strong emission peak (5D47F5, 545 nm) existed in the emission spectra under 313 nm excitation. The quenching concentration of Tb3+ reached up to 20.0 mol% was observed in Gd1.8Tb0.2MgTiO6 phosphors. In order to explore the potential application of Gd2−2xMgTiO6:xTb3+ phosphors in white LED solid-state lighting, the fluorescence decay curves and thermal stability were carried out.

Notes

Acknowledgements

The authors acknowledge the generous financial support from National Pre-research Foundation of China (6140208010201 and 61402080104), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Research and Innovation Program for College Graduates of Jiangsu Province (KYCX17_0970) and the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions (TAPP, PPZY2015B128).

References

  1. 1.
    F. Xue, Y. Hu, C. Li et al., Photoluminescence and long persistent luminescence properties of a novel green emitting phosphor Ca3TaAl3Si2O14:Tb3+. J. Mater. Sci.: Mater. Electron. 27(8), 8486–8492 (2016)Google Scholar
  2. 2.
    N.C. George, K.A. Denault, R. Seshadri, Phosphors for solid-state white lighting. Annu. Rev. Mater. Res. 43(43), 481–501 (2013)CrossRefGoogle Scholar
  3. 3.
    H.S. Jang, J.H. Kang, Y.H. Won et al., Mechanism for strong yellow emission of Y3Al5O12:Ce3+ phosphor under electron irradiation for the application to field emission backlight units. Appl. Phys. Lett. (2007).  https://doi.org/10.1063/1.2643064 Google Scholar
  4. 4.
    J. Zhong, S. Zhou, D. Chen et al., Enhanced luminescence of a Ba2GdSbO6:Mn4+ red phosphor via cation doping for warm white light-emitting diodes. Dalton Trans. 47(25), 8248–8256 (2018)CrossRefGoogle Scholar
  5. 5.
    M. Zhao, H. Liao, M.S. Molokeev et al., Emerging ultra-narrow-band cyan-emitting phosphor for white LEDs with enhanced color rendition. Light: Sci. Appl. 8(1), 38 (2019)CrossRefGoogle Scholar
  6. 6.
    J. Zhou, J. Luo, X. Rong et al., Lead-free perovskite derivative Cs2SnCl6−xBrx single crystals for narrowband photodetectors. Adv. Opt. Mater. 7(10), 1900139 (2019)CrossRefGoogle Scholar
  7. 7.
    J. Qiao, L. Ning, M.S. Molokeev et al., Eu2+ site preferences in the mixed cation K2BaCa(PO4)2 and thermally stable luminescence. J. Am. Chem. Soc. 140(30), 9730–9736 (2018)CrossRefGoogle Scholar
  8. 8.
    J. Li, Q. Liang, J.-Y. Hong et al., White light emission and enhanced color stability in a single-component host. ACS Appl. Mater. Interfaces 10(21), 18066–18072 (2018)CrossRefGoogle Scholar
  9. 9.
    I. Won Bin, G. Nathan, K. Joshua et al., Efficient and color-tunable oxyfluoride solid solution phosphors for solid-state white lighting. Adv. Mater. 23(20), 2300–2305 (2011)CrossRefGoogle Scholar
  10. 10.
    W. Feng, L. Xiaogang, Multicolor tuning of lanthanide-doped nanoparticles by single wavelength excitation. Acc. Chem. Res. 47(4), 1378–1385 (2014)CrossRefGoogle Scholar
  11. 11.
    W. Chen, Z. Liu, L. Shen et al., Design and energy transfer mechanism for single-phased Gd2MgTiO6:Bi3+, Eu3+ tunable white light-emitting phosphors. J. Mater. Sci. 54(5), 4056–4072 (2019)CrossRefGoogle Scholar
  12. 12.
    G. Ning, Y. Song, H. You et al., Optical properties and energy transfer of NaCaPO4:Ce3 + , Tb3 + phosphors for potential application in light-emitting diodes. Eur. J. Inorg. Chem. 2010(29), 4636–4642 (2010)CrossRefGoogle Scholar
  13. 13.
    Q. Liu, L.X. Wang, L. Zhang et al., Enhanced luminescence and structure evolution of double perovskite (K, Na)LaMgWO6:Eu3+ phosphor for white LEDs. J. Mater. Sci.: Mater. Electron. 26(10), 8083–8088 (2015)Google Scholar
  14. 14.
    X. Huang, H. Guo, A novel highly efficient single-composition tunable white-light-emitting LiCa3MgV3O12:Eu3+ phosphor. Dyes Pigm. 154, 82–86 (2018)CrossRefGoogle Scholar
  15. 15.
    C. Ji, Z. Huang, J. Wen et al., Blue-emitting Bi-doped double perovskite Gd2ZnTiO6 phosphor with near-ultraviolet excitation for warm white light-emitting diodes. J. Alloys Compd. (2019).  https://doi.org/10.1016/j.jallcom.2019.02.279 Google Scholar
  16. 16.
    A. Fu, A. Guan, F. Gao et al., A novel double perovskite La2ZnTiO6:Eu3+ red phosphor for solid-state lighting: Synthesis and optimum luminescence. Opt. Laser Technol. 96, 43–49 (2017)CrossRefGoogle Scholar
  17. 17.
    Y. Liang, H.M. Noh, W. Ran et al., The design and synthesis of new double perovskite (Na, Li)YMg(W, Mo)O6:Eu3+ red phosphors for white light-emitting diodes. J. Alloy. Compd. 716, 56–64 (2017)CrossRefGoogle Scholar
  18. 18.
    L. Quan, X. Li, Z. Bing et al., Structure evolution and delayed quenching of the double perovskite NaLaMgWO6:Eu3 + phosphor for white LEDs. Ceram. Int. 42(14), 15294–15300 (2016)CrossRefGoogle Scholar
  19. 19.
    S. Ida, C. Ogata, M. Eguchi et al., Photoluminescence of perovskite nanosheets prepared by exfoliation of layered oxides, K2Ln2Ti3O10, KLnNb2O7, and RbLnTa2O7 (Ln: lanthanide ion). J. Am. Chem. Soc. 130(22), 7052–7059 (2008)CrossRefGoogle Scholar
  20. 20.
    Q. Hu, Z. Deng, M. Hu et al., X-ray scintillation in lead-free double perovskite crystals. Sci. China Chem. 61(12), 1581–1586 (2018)CrossRefGoogle Scholar
  21. 21.
    M. Zhao, Z. Xia, X. Huang et al., Li substituent tuning of LED phosphors with enhanced efficiency, tunable photoluminescence, and improved thermal stability. Sci. Adv. 5(1), 0363 (2019)Google Scholar
  22. 22.
    Y.Y. Tsai, H.R. Shih, M.T. Tsai et al., A novel single-phased white light emitting phosphor of Eu3+ ions-doped Ca2LaTaO6. Mater. Chem. Phys. 143(2), 611–615 (2014)CrossRefGoogle Scholar
  23. 23.
    L.X. Wang, Q. Liu, K. Shen et al., A high quenching content red-emitting phosphor based on double perovskite host BaLaMgSbO6 for white LEDs. J. Alloy. Compd. 696, 443–449 (2017)CrossRefGoogle Scholar
  24. 24.
    A.R. Sharits, J.F. Khoury, P.M. Woodward, Evaluating NaREMgWO6 (RE = La, Gd, Y) doubly ordered double perovskites as Eu3+ phosphor hosts. Inorg. Chem. 55(23), 12383–12390 (2016)CrossRefGoogle Scholar
  25. 25.
    P. Karen, P.M. Woodward, J. Lindén et al., Verwey transition in mixed-valence TbBaFe2O5: two attempts to order charges. Phys. Rev. B 64(21), 214405 (2001)CrossRefGoogle Scholar
  26. 26.
    W. Fu, D. Ijdo, New insight into the symmetry and the structure of the double perovskites Ba2LnNbO6 (Ln = lanthanides and Y). J. Solid State Chem. 179(4), 1022–1028 (2006)CrossRefGoogle Scholar
  27. 27.
    X. Yan, G.R. Fern, R. Withnall et al., Effects of the host lattice and doping concentration on the colour of Tb3+ cation emission in Y2O2S:Tb3+ and Gd2O2S:Tb3+ nanometer sized phosphor particles. Nanoscale 5(18), 8640–8646 (2013)CrossRefGoogle Scholar
  28. 28.
    H. Chen, H. Lin, Q. Huang et al., A novel double-perovskite Gd2ZnTiO6:Mn 4+ red phosphor for UV-based w-LEDs: structure and luminescence properties. J. Mater. Chem. C 4(12), 2374–2381 (2016)CrossRefGoogle Scholar
  29. 29.
    X. Yin, Y. Wang, F. Huang et al., Excellent red phosphors of double perovskite Ca2LaMO6:Eu (M = Sb, Nb, Ta) with distorted coordination environment. J. Solid State Chem. 184(12), 3324–3328 (2011)CrossRefGoogle Scholar
  30. 30.
    L. Wang, X. Yang, Q. Zhang et al., Luminescence properties of La2O2S:Tb3+ phosphors and phosphor-embedded polymethylmethacrylate films. Mater. Des. 125, 100–108 (2017)CrossRefGoogle Scholar
  31. 31.
    P. Jiang, Z. Zhou, W. Gao et al., B-site ordered double perovskite LaBa1−xSrxZnSbO6:Sr(2+)-doping-induced symmetry evolution and structure-luminescence correlations. Dalton Trans. 45(9), 3949–3957 (2016)CrossRefGoogle Scholar
  32. 32.
    G. King, L.M. Wayman, P.M. Woodward, Magnetic and structural properties of NaLnMnWO6 and NaLnMgWO6 perovskites. J. Solid State Chem. 182(6), 1319–1325 (2009)CrossRefGoogle Scholar
  33. 33.
    M. Kim, J. Moon, H. Choi et al., Investigation of the magnetic properties in double perovskite R2CoMnO6 single crystals (R = rare earth: La to Lu). J. Phys.: Condens. Matter 27(42), 426002 (2015)Google Scholar
  34. 34.
    P.N. Lekshmi, G. Raji, M. Vasundhara et al., Re-entrant spin glass behaviour and magneto-dielectric effect in insulating Sm2NiMnO6 double perovskite. J. Mater. Chem. C 1(40), 6565–6574 (2013)CrossRefGoogle Scholar
  35. 35.
    D. Dexter, J.H. Schulman, Theory of concentration quenching in inorganic phosphors. J. Chem. Phys. 22(6), 1063–1070 (1954)CrossRefGoogle Scholar
  36. 36.
    L. Ozawa, Determination of self-concentration quenching mechanisms of rare earth luminescence from intensity measurements on powdered phosphor screens. J. Electrochem. Soc. 126(1), 106–109 (1979)CrossRefGoogle Scholar
  37. 37.
    M. Retuerto, A. Munoz, M.J. Martínez-Lope et al., magnetic interactions in the double perovskites R2NiMnO6 (R = Tb, Ho, Er, Tm) investigated by neutron diffraction. Inorg. Chem. 54(22), 10890–10900 (2015)CrossRefGoogle Scholar
  38. 38.
    Z. Wang, J.-G. Li, Q. Zhu et al., Sacrificial conversion of layered rare-earth hydroxide (LRH) nanosheets into (Y1−xEux) PO4 nanophosphors and investigation of photoluminescence. Dalton Trans. 45(12), 5290–5299 (2016)CrossRefGoogle Scholar
  39. 39.
    C. Liu, Z. Xia, M.S. Molokeev et al., Synthesis, crystal structure, and enhanced luminescence of garnet-type Ca3Ga2Ge3O12:Cr3+ by codoping Bi3+. J. Am. Ceram. Soc. 98(6), 1870–1876 (2015)CrossRefGoogle Scholar
  40. 40.
    H.F. Yang, Y.H. Tang, X.Y. Sun, Q. Liu, X.G. Huang, L.X. Wang, Z.X. Fu, Q.T. Zhang, S.W. Or, Biomass-derived porous carbon materials with NiS nanoparticles for high performance supercapacitors. J. Mater. Sci.: Mater. Electron. 28, 14874–14883 (2017)Google Scholar
  41. 41.
    R. Yu, C. Wang, J. Chen et al., Photoluminescence characteristics of Eu3+-doped double-perovskite phosphors. ECS J. Solid State Sci. Technol. 3(3), R33–R37 (2014)CrossRefGoogle Scholar
  42. 42.
    H. Yang, Y. Tang, X. Huang, L. Wang, Q. Zhang, Activated porous carbon derived from walnut shells with promising material properties for supercapacitors. J. Mater. Sci.: Mater. Electron. 28, 18637–18645 (2017)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jinhui Xie
    • 1
    • 2
  • Nan Ding
    • 1
    • 2
  • Xibing Li
    • 1
    • 2
  • Wentao Huang
    • 1
    • 2
  • Huijie Yang
    • 1
    • 2
  • Jue Wang
    • 1
    • 2
  • Lixi Wang
    • 1
    • 2
    Email author
  • Qitu Zhang
    • 1
    • 2
    Email author
  1. 1.College of Materials Science and EngineeringNanjing Tech UniversityNanjingChina
  2. 2.Jiangsu Collaborative Innovation Center for Advanced Inorganic Function CompositesNanjingChina

Personalised recommendations