Energy-storage properties of Sr-doped PLZST bulk ceramics and thick films

  • Xingyu Qi
  • Hongwei ChenEmail author
  • Bowen Deng
  • Jinyu Zhao
  • Meng Wei
  • Libin Gao
  • Jihua ZhangEmail author


The dielectric and energy-storage properties of (Pb0.97−xSrxLa0.02)(Zr0.675Sn0.285Ti0.04)O3 (x = 0, 0.005, 0.01, 0.015) bulk ceramics and thick films were investigated. All samples are orthorhombic perovskite antiferroelectric phase and have dielectric temperature relaxation property. Sr-dopant can improve the stability of the antiferroelectric phase and increase the phase transition field, but cause a decrease in dielectric constant. Thick films have a higher maximum tolerable external electric field strength than bulk ceramics. Compared with undoped thick film, the forward phase transition field and the backward phase transition field of the 1.5% doped thick film increased by 32% and 27%, respectively. The maximum polarization of the 1.5% doped thick film is decreased by 17%. The largest recoverable energy-storage density was obtained in thick film with 1% Sr doping. The largest recoverable energy-storage density is 2.77 J/cm3, which is 9.4% higher than the undoped thick film ceramic and 477% higher than the bulk ceramic with 1% Sr doping. The high energy storage density indicates that the obtained thick film is promising for pulsed power capacitors.



This work was supported by the Innovation Foundation of Collaboration Innovation Center of Electronic Materials and Devices (Grant No. ICEM2015-4002), the National Natural Science Foundation of China (Grant No. 51602037) and the China Postdoctoral Science Foundation (Grant No. 2018M633343).


  1. 1.
    H.G. Wisken, F. Podeyn, H.G.G. Weise, High energy density capacitors for ETC gun applications. IEEE Trans. Magn. 37(1), 332–335 (2001)CrossRefGoogle Scholar
  2. 2.
    H.G. Wisken, T.H.G.G. Weise, Critical components for high energy density capacitor modules. IEEE Trans. Magn. 39(1), 446–450 (2003)CrossRefGoogle Scholar
  3. 3.
    H.G. Wisken, T.H.G.G. Weise, Capacitive pulsed power supply systems for ETC guns. IEEE Trans. Magn. 39(1), 501–504 (2003)CrossRefGoogle Scholar
  4. 4.
    X.H. Hao, A review on the dielectric materials for high energy-storage application. J. Adv. Dielectr. 03(1), 1330001 (2013)CrossRefGoogle Scholar
  5. 5.
    Q. Li, K. Han, M.R. Gadinski, G. Zhang, Q. Wang, High energy and power density capacitors from solution-processed ternary ferroelectric polymer nanocomposites. Adv. Mater. 26(36), 6244–6249 (2014)CrossRefGoogle Scholar
  6. 6.
    K. Han, Q. Li, C. Chanthad, A hybrid material approach toward solution-processable dielectrics exhibiting enhanced breakdown strength and high energy density. Adv. Func. Mater. 25(23), 3505–3513 (2015)CrossRefGoogle Scholar
  7. 7.
    S.V. Trukhanov, A.V. Trukhanov, V.A. Turchenko, V.G. Kostishyn, L.V. Panina, I.S. Kazakevich, A.M. Balagurov, Structure and magnetic properties of BaFe11.9In0.1O19 hexaferrite in a wide temperature range. J. Alloys Compd. 689, 383–393 (2016)CrossRefGoogle Scholar
  8. 8.
    M. Wei, J.H. Zhang, K.T. Wu, H.W. Chen, C.R. Yang, Effect of BiNbO4 doping on the dielectric properties of BaTiO3 ceramics. Int. J. Appl. Ceram. Technol. 15(1), 197–202 (2017)CrossRefGoogle Scholar
  9. 9.
    V.A. Turchenko, S.V. Trukhanov, A.M. Balagurov, V.G. Kostishyn, A.V. Trukhanov, L.V. Panina, E.L. Trukhanova, Features of crystal structure and dual ferroic properties of BaFe12-xMexO19 (Me = In3 + and Ga3 + ; x = 0.1-1.2). J. Magn. Magn. Mater. 464, 139–147 (2018)CrossRefGoogle Scholar
  10. 10.
    X.X. Dong, H.W. Chen, M. Wei, K.T. Wu, J.H. Zhang, Structure, dielectric and energy storage properties of BaTiO3, ceramics doped with YNbO4. J. Alloys Compd. 477, 721–727 (2018)CrossRefGoogle Scholar
  11. 11.
    S.V. Trukhanov, A.V. Trukhanov, V.A. Turchenko, V. An, D.I. Trukhanov, E.L. Tishkevich, T.I. Trukhanova, D.V. Zubar, V.G. Karpinsky, L.V. Kostishyn, D.A. Panina, S.A. Vinnik, E.A. Gudkova, P. Trofimov, A. Thakur, Y.Yang Thakur, Magnetic and dipole moments in indium doped barium hexaferrites. J. Magn. Magn. Mater. 457, 83–96 (2018)CrossRefGoogle Scholar
  12. 12.
    H. Yu, J.H. Zhang, M. Wei, J.P. Huang, H.W. Chen, C.R. Yang, Enhanced energy storage density performance in (Pb0.97La0.02)(Zr0.5Sn0.44Ti0.06)–BiYO3 anti-ferroelectric composite ceramics. J. Mater. Sci.: Mater. Electron. 28(1), 832–838 (2017)Google Scholar
  13. 13.
    E. Sawaguchi, H. Maniwa, S. Hoshino, Antiferroelectric structure of lead zirconate. Phys. Rev. 83(5), 1078 (1951)CrossRefGoogle Scholar
  14. 14.
    K. Markowski, S.E. Park, S. Yoshikawa, L.E. Cross, Effect of compositional variations in the lead lanthanum zirconate stannate titanate system on electrical properties. J. Am. Ceram. Soc. 79(12), 3297–3304 (1996)CrossRefGoogle Scholar
  15. 15.
    R. Xu, Z. Xu, Y.J. Feng, J.J. Tian, D. Huang, Energy storage and release properties of Sr-doped (Pb, La)(Zr, Sn, Ti)O3 antiferroelectric ceramics. Ceram. Int. 42(11), 12875–12879 (2016)CrossRefGoogle Scholar
  16. 16.
    Z. Liu, Y. Bai, X.F. Chen, X.L. Dong, H.C. Nie, F. Cao, G.S. Wang, Linear composition-dependent phase transition behavior and energy storage performance of tetragonal PLZST antiferroelectric ceramics. J. Alloys Compd. 691, 721–725 (2016)CrossRefGoogle Scholar
  17. 17.
    R. Xu, Q.S. Zhu, J.J. Tian, Y.J. Feng, Z. Xu, Effect of Ba-dopant on dielectric and energy storage properties of PLZST antiferroelectric ceramics. Ceram. Int. 42(2), 2481–2485 (2017)CrossRefGoogle Scholar
  18. 18.
    W. Pan, Q. Zhang, A. Bhalla, L.E. Cross, Field-forced antiferroelectric-to-ferroelectric switching in modified lead zirconate titanate stannate ceramics. Cheminform 72(4), 571–578 (2010)Google Scholar
  19. 19.
    D. Berlincourt, Transducers using forced transitions between ferroelectric and antiferroelectric states. IEEE Trans. Son. Ultrason. 13(4), 116–124 (1966)CrossRefGoogle Scholar
  20. 20.
    J.F. Li, D.D. Viehland, T. Tani, C.D.E. Lakeman, D.A. Payne, Piezoelectric properties of sol-gel-derived ferroelectric and antiferroelectric thin layers. J. Appl. Phys. 75(1), 442–448 (1994)CrossRefGoogle Scholar
  21. 21.
    I. Kanno, S. Hayashi, M. Kitagawa, R. Takayama, T. Hirao, Antiferroelectric PbZrO3 thin films prepared by multi-ion-beam sputtering. Appl. Phys. Lett. 66(2), 145–147 (1995)CrossRefGoogle Scholar
  22. 22.
    L.M. Chen, Y. Li, Q.W. Zhang, X.H. Hao, Electrical properties and energy-storage performance of (Pb0.92Ba0.05La0.02)(Zr0.68Sn0.27Ti0.05)O3 antiferroelectric thick films prepared by tape-casing method. Ceram. Int. 42(11), 12537–12542 (2016)CrossRefGoogle Scholar
  23. 23.
    L.J. Zhou, A. Zimmermann, Y.P. Zeng, F. Aldinger, Effects of PbO content on the sintering behavior, microstructure, and properties of La-doped PZST antiferroelectric ceramics. J. Mater. Sci.: Mater. Electron. 15(3), 145–151 (2004)Google Scholar
  24. 24.
    M. Wei, J.H. Zhang, M.M. Zhang, Z.Y. Yao, H.W. Chen, C.R. Yang, Relaxor behavior of BaTiO3-BaYO3 perovskite materials for high energy density capacitors. Ceram. Int. 43(6), 4768–4774 (2017)CrossRefGoogle Scholar
  25. 25.
    M. Wei, J.H. Zhang, K.T. Wu, H.W. Chen, C.R. Yang, Effect of BaTiO3 (M = Al, In, Y, Sm, Nd, and La) doping on the dielectric properties of BaTiO3 ceramics. Ceram. Int. 43(13), 9593–9599 (2017)CrossRefGoogle Scholar
  26. 26.
    L.M. Chen, Y. Li, Q.W. Zhang, X.H. Hao, Electrical properties and energy-storage performance of (Pb0.92Ba0.05La0.02)(Zr0.68Sn0.27Ti0.05)3 antiferroelectric thick films prepared by tape-casing method. Ceram. Int. 42(11), 12537–12542 (2016)CrossRefGoogle Scholar
  27. 27.
    Q.F. Zhang, H.F. Tong, J. Chen, Y.M. Lu, T.Q. Yang, X. Yao, Y.B. He, High recoverable energy density over a wide temperature range in Sr modified (Pb, La)(Zr, Sn, Ti)O3 antiferroelectric ceramics with an orthorhombic phase. Appl. Phys. Lett. 109(26), 262901 (2016)CrossRefGoogle Scholar
  28. 28.
    V.A. Isupov, Some problems of diffuse ferroelectric phase transitions. Ferroelectrics 90(1), 113–118 (1989)CrossRefGoogle Scholar
  29. 29.
    L.E. Cross, W. Heywang, K. Lubitz, W. Wersing, in Piezoelectricity, ed. by H. Walter, L. Karl, W. Wolfram (Springer, New York, 1973), p. 131Google Scholar
  30. 30.
    Q.F. Zhang, T.Q. Yang, Y.Y. Zhang, X. Yao, Phase transition and electric field induced strain properties in Sm modified lead zirconate stannate titanate based antiferroelectric ceramics. J. Appl. Phys. 113(24), 244103 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Electronic Thin Films and Integrated Devices, Collaboration Innovation Center of Electric Materials and DevicesUniversity of Electronic Science & Technology of ChinaChengduPeople’s Republic of China

Personalised recommendations