A high-performance room temperature methanol gas sensor based on alpha-iron oxide/polyaniline/PbS quantum dots nanofilm

  • Yong Zhang
  • Wenjing Pan
  • Guokang Dong
  • Dongzhi ZhangEmail author


A high-performance room temperature methanol gas sensor based on alpha-iron oxide/polyaniline/lead sulfide quantum dots (α-Fe2O3/PANI/PbS QDs) nanofilm was demonstrated in this paper, among which the α-Fe2O3 was an urchin-shaped hollow microsphere. The sensing film was fabricated on an epoxy substrate with interdigital electrodes via successive ionic layer adsorption and reaction technique. The prepared α-Fe2O3/PANI/PbS QDs nanocomposite was examined by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, scanning election microscopy and Fourier transform infrared spectrum. The methanol sensing performances of the α-Fe2O3/PANI/PbS QDs film sensor were investigated against methanol from 10 to 100 ppm at room temperature. The experimental results indicated that the methanol sensor in this work had an excellent response, outstanding selectivity and good repeatability at room temperature. The underlying sensing mechanism of the α-Fe2O3/PANI/PbS QDs film toward methanol was ascribed to a series of interactions and changes on the surface of thin films, which make their resistance change greatly. Larger surface area and much more active adsorption sites also played an important role.



This work was supported by the National Natural Science Foundation of China (51777215), the Key Research & Development Plan Project of Shandong Province (2018GSF117002), the Fundamental Research Funds for the Central Universities of China (18CX07010A), the Key Laboratory of Engineering Dielectrics and Its Application (Harbin University of Science and Technology), Ministry of Education (KFZ1801), and the Open Fund of Key Laboratory of Marine Spill Oil Identification and Damage Assessment Technology, State Oceanic Administration of China (201801).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    M. Sinha, R. Mahapatra, B. Mondal, R. Ghosh, A high-sensitivity gas sensor toward methanol using ZnO microrods: effect of operating temperature. J. Electron. Mater. 46, 1–7 (2017)CrossRefGoogle Scholar
  2. 2.
    J. Qin, Z.D. Cui, X.J. Yang, S.L. Zhu, Z.Y. Li, Y.Q. Liang, Three-dimensionally ordered macroporous La1−xMgxFeO3 as high performance gas sensor to methanol. J. Alloys Compd. 635, 194–202 (2015)CrossRefGoogle Scholar
  3. 3.
    N.G. Pramod, S.N. Pandey, P.P. Sahay, Structural, optical and methanol sensing properties of sprayed In2O3 nanoparticle thin films. Ceram. Int. 38, 4151–4158 (2012)CrossRefGoogle Scholar
  4. 4.
    A. Dey, B. Kantha, S.K. Sarkar, Sol-gel grown Pd modified WO3 thin film based methanol sensor and the effect of annealing temperatures. Microsyst. Technol. 23, 4195–4201 (2016)CrossRefGoogle Scholar
  5. 5.
    K. Li, M.P. Chen, Q. Rong, Z.Q. Zhu, Q.J. Liu, J. Zhang, High selectivity methanol sensor based on Co-Fe2O3/SmFeO3 p-n heterojunction composites. J. Alloy. Compd. 765, 193–200 (2018)CrossRefGoogle Scholar
  6. 6.
    D.Z. Zhang, X. Fan, A.J. Yang, X.Q. Zong, Hierarchical assembly of urchin-like alpha-iron oxide hollow microspheres and molybdenum disulphide nanosheets for ethanol gas sensing. J. Colloid Interface Sci. 523, 217–225 (2018)CrossRefGoogle Scholar
  7. 7.
    S. Jana, A. Mondal, A. Ghosh, Fabrication of stable NiO/Fe2O3 heterostructure: a versatile hybrid material for electrochemical sensing of glucose, methanol and enhanced photodecomposition and/photoreduction of water contaminants. Appl. Catal. B 232, 26–36 (2018)CrossRefGoogle Scholar
  8. 8.
    B.F. Zheng, T. Ouyang, Z. Wang, J. Long, Y. Chen, Z.Q. Liu, Enhanced plasmon-driven photoelectrocatalytic methanol oxidation on Au decorated α-Fe2O3 nanotube arrays. Chem. Commun. 54, 9583–9586 (2018)CrossRefGoogle Scholar
  9. 9.
    K. Vijayalakshmi, S.D. Jereil, Enhanced ethanol sensing performance of Fe: TiO2 nanowires and their mechanism of sensing at room temperature. Ceram. Int. 41, 3220–3226 (2015)CrossRefGoogle Scholar
  10. 10.
    H. Kwon, Y. Lee, S. Hwang, J.K. Kim, Highly-sensitive H2 sensor operating at room temperature using Pt/TiO2 nanoscale Schottky contacts. Sens. Actuators B 241, 985–992 (2017)CrossRefGoogle Scholar
  11. 11.
    T. Wang, D. Huang, Z. Yang, S. Xu, G. He, X. Li, N. Hu, G. Yin, D. He, L. Zhang, A review on graphene-based gas/vapor sensors with unique properties and potential applications. Nano-Micro Lett. 8, 95–119 (2016)CrossRefGoogle Scholar
  12. 12.
    M. Eising, C.E. Cava, R.V. Salvatierra, A.J.G. Zarbin, L.S. Roman, Doping effect on self-assembled films of polyaniline and carbon nanotube applied as ammonia gas sensor. Sens. Actuators B 245, 25–33 (2017)CrossRefGoogle Scholar
  13. 13.
    M. Soleimani-Lashkenari, S. Rezaei, J. Fallah, Electrocatalytic performance of Pd/PANI/TiO2 nanocomposites for methanol electrooxidation in alkaline media. Synth. Met. 235, 71–79 (2018)CrossRefGoogle Scholar
  14. 14.
    R. Paulraj, P. Shankar, G.K. Mani, L. Nallathambi, J.B. Rayappan, PANI–CdO nanocomposite thin films as a room temperature methanol sensor. J. Electron. Mater. 47, 6000–6006 (2018)CrossRefGoogle Scholar
  15. 15.
    N. John, J.S. Erlichman, J.W. Aston, A sensitive electrochemical sensor based on chitosan and electropolymerized meldola blue for monitoring NO in brain slices. Sens. Actuators B 143, 673–680 (2010)CrossRefGoogle Scholar
  16. 16.
    W.C. Wang, Y.T. Tian, X.C. Wang, H. He, Y.R. Xu, C. He, X.J. Li, Ethanol sensing properties of porous ZnO spheres via hydrothermal route. J. Mater. Sci. 48, 3232–3238 (2013)CrossRefGoogle Scholar
  17. 17.
    C.J. Shao, Y.Q. Chang, Y. Long, High performance of nanostructured ZnO film gas sensor at room temperature. Sens. Actuators B 204, 666–672 (2014)CrossRefGoogle Scholar
  18. 18.
    H. Liu, M. Li, G. Shao, W.K. Zhang, W.W. Wang, H.B. Song, H.F. Cao, W.L. Ma, J. Tang, Enhancement of hydrogen sulfide gas sensing of PbS colloidal quantum dots by remote doping through ligand exchange. Sens. Actuators B 212, 434–439 (2015)CrossRefGoogle Scholar
  19. 19.
    H. Liu, M. Li, O. Voznyy, L. Hu, Q.Y. Fu, D.X. Zhou, Z. Xia, E.H. Sargent, J. Tang, Physically flexible, rapid-response gas sensor based on colloidal quantum dot solids. Adv. Mater. 26, 2718–2724 (2014)CrossRefGoogle Scholar
  20. 20.
    Y.L. Liu, L.L. Wang, H.R. Wang, M.Y. Xiong, T.Q. Yang, G.S. Zakharova, Highly sensitive and selective ammonia gas sensors based on PbS quantum dots/TiO2 nanotube arrays at room temperature. Sens. Actuators B 236, 529–536 (2016)CrossRefGoogle Scholar
  21. 21.
    H.J. Kim, J.H. Lee, Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview. Sens. Actuators B 192, 607–627 (2014)CrossRefGoogle Scholar
  22. 22.
    L. Zhang, W. Wang, Z. Chen, L. Zhou, H. Xu, W. Zhu, Fabrication of flower-like Bi2WO6 superstructures as high performance visible-light driven photocatalysts. J. Mater. Chem. 17, 2526–2532 (2007)CrossRefGoogle Scholar
  23. 23.
    T. Çorlu, I. Karaduman, M.A. Yildirim, A. Ateş, S. Acar, Effect of doping materials on the low-level NO gas sensing properties of ZnO thin films. J. Electron. Mater. 46, 3995–4002 (2017)CrossRefGoogle Scholar
  24. 24.
    B. Soltabayev, M.A. Yildirim, A. Ates, S. Acar, The effect of indium doping concentration on structural, morphological and gas sensing properties of IZO thin films deposited SILAR method. Mater. Sci. Semicond. Process. 101, 28–36 (2019)CrossRefGoogle Scholar
  25. 25.
    D.Z. Zhang, Z.L. Wu, P. Li, X.Q. Zong, G.K. Dong, Y. Zhang, Facile fabrication of polyaniline/multi-walled carbon nanotubes/molybdenum disulfide ternary nanocomposite and its high-performance ammonia-sensing at room temperature. Sens. Actuator B 258, 895–905 (2018)CrossRefGoogle Scholar
  26. 26.
    M. Eita, A. Usman, A.O. El-Ballouli, E. Alarousu, O.M. Bakr, O.F. Mohammed, A layer-by-layer ZnO nanoparticle-PbS quantum dot self-assembly platform for ultrafast interfacial electron injection. Small 11, 112–118 (2015)CrossRefGoogle Scholar
  27. 27.
    P. Liu, Y. Huang, J. Yan, Y. Zhao, Magnetic graphene@PANI@porous TiO2 ternary composites for high-performance electromagnetic wave absorption. J. Mater. Chem. C 4, 6362–6370 (2016)CrossRefGoogle Scholar
  28. 28.
    A. Sangeeta, S. Seenivasan, D.H. Kim, Construction of heterojunction photoelectrode via atomic layer deposition of Fe2O3 on Bi2WO6 for highly efficient photoelectrochemical sensing and degradation of tetracycline. Appl. Catal. B 244, 11–24 (2019)CrossRefGoogle Scholar
  29. 29.
    J.J. Lu, Y.H. Chen, L. Li, X.T. Cai, S.X. Zhong, L.J. Wu, J.R. Chen, S. Bai, Facet engineering on the interface of BiOCl-PbS heterostructures for enhanced broad-spectrum photocatalytic H2 production. Chem. Eng. J. 362, 1–11 (2019)CrossRefGoogle Scholar
  30. 30.
    D.Z. Zhang, G.K. Dong, Z.L. Wu, W.J. Pan, X. Fan, Liquefied petroleum gas sensing properties of ZnO/PPy/PbS QDs nanocomposite prepared by self-assembly combining with SILAR method. IEEE Sens. J. 19, 2855–2862 (2019)CrossRefGoogle Scholar
  31. 31.
    D.Z. Zhang, D.Y. Wang, P. Li, X.Y. Zhou, X.Q. Zong, G.K. Dong, Facile fabrication of high-performance QCM humidity sensor based on layer-by-layer self-assembled polyaniline/graphene oxide nanocomposite film. Sens. Actuator B 255, 1869–1877 (2018)CrossRefGoogle Scholar
  32. 32.
    D.W. Luo, S.S. Liu, F. Lin, L.H. Yu, J.J. Zhang, Fabrication and characterization of double protective carbon aerogel (CA)/alpha-Fe2O3@polypyrrole (PPy) composites as an anode material for high performance lithium ion batteries. Solid State Ionics 321, 1–7 (2018)CrossRefGoogle Scholar
  33. 33.
    H. Wang, S. Wei, F. Zhang, Y. Li, X. Guo, L. Song, Sea urchin-like SnO2/Fe2O3, microspheres for an ethanol gas sensor with high sensitivity and fast response/recovery. J. Mater. Sci.: Mater. Electron. 28, 9969–9973 (2017)Google Scholar
  34. 34.
    P. Sun, B. Wang, L. Zhao, H. Gao, T. Wang, X. Yang, C. Liu, G. Lu, Enhanced gas sensing by amorphous double-shell Fe2O3 hollow nanospheres functionalized with PdO nanoparticles. Sens. Actuators B 252, 322–329 (2017)CrossRefGoogle Scholar
  35. 35.
    H.L. Xing, Z.Y. Shen, L. Wang, Y.T. Zhu, X.L. Ji, Synthesis α-Fe2O3/SnO2@PANI ternary composites for X-band electromagnetic wave absorption. J. Mater. Sci. 28, 8329–8338 (2017)Google Scholar
  36. 36.
    D.Z. Zhang, G.K. Dong, Y.H. Cao, Y. Zhang, Ethanol gas sensing properties of lead sulfide quantum dots-decorated zinc oxide nanorods prepared by hydrothermal process combining with successive ionic-layer adsorption and reaction method. J. Colloid Interface Sci. 528, 184–191 (2018)CrossRefGoogle Scholar
  37. 37.
    D.Z. Zhang, D.Y. Wang, X.Q. Zong, G.K. Dong, Y. Zhang, High-performance QCM humidity sensor based on graphene oxide/tin oxide/polyaniline ternary nanocomposite prepared by in situ oxidative polymerization method. Sens. Actuator B 262, 531–541 (2018)CrossRefGoogle Scholar
  38. 38.
    B. Qu, Y. Sun, L. Liu, C.Y. Li, C.J. Yu, X.T. Zhang, Y.J. Chen, Ultrasmall Fe2O3 nanoparticles/MoS2 nanosheets composite as high-performance anode material for lithium ion batteries. Sci. Rep. 7, 42772 (2017)CrossRefGoogle Scholar
  39. 39.
    C.H. Feng, X.Y. Kou, B. Chen, G.B. Qian, Y.F. Sun, G.Y. Lu, One-pot synthesis of in doped NiO nanofibers and their gas sensing properties. Sens. Actuators B 253, 584–591 (2017)CrossRefGoogle Scholar
  40. 40.
    W. Tang, J. Wang, P.J. Yao, X.G. Li, Hollow hierarchical SnO2-ZnO composite nanofibers with heterostructure based on electrospinning method for detecting methanol. Sens. Actuators B 192, 543–549 (2014)CrossRefGoogle Scholar
  41. 41.
    G. Neri, A. Bonavita, G. Rizzo, S. Galvagno, S. Capone, P. Siciliano, Methanol gas-sensing properties of CeO2-Fe2O3 thin films. Sens. Actuators B 114, 687–695 (2006)CrossRefGoogle Scholar
  42. 42.
    J.Y. Liu, M.J. Dai, T.S. Wang, P. Sun, X.S. Liang, G.Y. Lu, K. Shimanoe, N. Yamazoe, Enhanced gas sensing properties of SnO2 hollow spheres decorated with CeO2 nano-particles heterostructure composite materials. ACS Appl. Mater. Interfaces. 8, 6669–6677 (2016)CrossRefGoogle Scholar
  43. 43.
    P.-P. Zhang, H. Zhang, X.-H. Sun, A uniform porous multilayer-junction thin film for enhanced gas-sensing performance. Nanoscale 8(8), 1430–1436 (2016)CrossRefGoogle Scholar
  44. 44.
    W. Tang, J. Wang, Methanol sensing micro-gas sensors of SnO2–ZnO nanofibers on Si/SiO2/Ti/Pt substrate via stepwise-heating electrospinning. J. Mater. Sci. 50, 4209–4220 (2015)CrossRefGoogle Scholar
  45. 45.
    D. Das, P. Choudhury, L.J. Borthakur, I.R. Kamrupi, U. Gogoi, S.K. Dolui, Methanol vapor sensor based on poly(styrene-co-butylacrylate)/polypyrrole-EG core-shell nanocomposites. Sens. Actuators B 199, 320–329 (2014)CrossRefGoogle Scholar
  46. 46.
    Q. Gao, W.T. Zheng, C. Di We, H.M. Lin, Methanol-sensing property improvement of mesostructured zinc oxide prepared by the nanocasting strategy. J. Nanomater. 2013, 263852 (2013)Google Scholar
  47. 47.
    O. Lupan, V. Postica, N. Wolff, O. Polonskyi, V. Duppel, V. Kaidas, E. Lazari, N. Ababii, F. Faupel, L. Kienle, R. Adelung, Localized synthesis of iron oxide nanowires and fabrication of high performance nanosensors based on a single Fe2O3 nanowire. Small 13, 1602868 (2017)CrossRefGoogle Scholar
  48. 48.
    S. Cho, D.H. Kim, B.S. Lee, J. Jung, W.R. Yu, S.H. Hong, S. Lee, Ethanol sensors based on ZnO nanotubes with controllable wall thickness via atomic layer deposition, an O2 plasma process and an annealing process. Sens. Actuators B 162, 300–306 (2012)CrossRefGoogle Scholar
  49. 49.
    F.D. Qu, H.F. Jiang, M.H. Yang, Designed formation through a metal organic framework route of ZnO/ZnCo2O4 hollow core-shell nanocages with enhanced gas sensing properties. Nanoscale 8, 16349–16356 (2016)CrossRefGoogle Scholar
  50. 50.
    P. Paulraj, P. Shankar, G.K. Mani, L. Nallathambi, J.B.B. Rayappan, Fabrication of PANI–ZnO nanocomposite thin film for room temperature methanol sensor. J. Mater. Sci. 28, 10799–10805 (2017)Google Scholar
  51. 51.
    R. Paulraj, G.K. Mani, L. Nallathambi, J.B.B. Rayappan, A room temperature methanol vapour sensor based on polyaniline nanoparticles. J. Nanosci. Nanotechnol. 16, 8315–8321 (2016)CrossRefGoogle Scholar
  52. 52.
    W. Jin, B. Dong, W. Chen, C. Zhao, L. Mai, Y. Dai, Synthesis and gas sensing properties of Fe2O3 nanoparticles activated V2O5 nanotubes. Sens. Actuators B Chem. 145, 211–215 (2010)CrossRefGoogle Scholar
  53. 53.
    R. Wang, S. Yang, R. Deng, W. Chen, Y.L. Liu, H. Zhang, G.S. Zakharova, Enhanced gas sensing properties of V2O5 nanowires decorated with SnO2 nanoparticles to ethanol at room temperature. RSC Adv. 5, 41050–41058 (2015)CrossRefGoogle Scholar
  54. 54.
    A. Mosahebfard, H.D. Jahromi, M.H. Sheikhi, Highly sensitive, room temperature methane gas sensor based on lead sulfide colloidal nanocrystals. IEEE Sens. J. 16, 4174–4179 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Control Science and EngineeringChina University of Petroleum (East China)QingdaoChina

Personalised recommendations