Advertisement

Metal–organic framework-derived porous TiO2 nanotablets with sensitive and selective ethanol sensing

  • Yuanyi Zhang
  • Jinniu Zhang
  • Gang Li
  • Deying Leng
  • Wei Wang
  • Ying Gao
  • Jianzhi Gao
  • Qingfei Liang
  • Hongbing LuEmail author
  • Chunlan WangEmail author
Article
  • 22 Downloads

Abstract

Porous TiO2 nanotablets were fabricated by calcining the MIL-125 metal–organic framework (MOF) precursors formed by a solvothermal method. Sensing results indicated that this kind of MOF-derived TiO2 nanotablets exhibited excellent ethanol sensing properties, including high response (46.12–500 ppm), relatively low operating temperature (250 °C), and low detection limit (0.417 ppm). The response of TiO2 nanotablets to 500 ppm ethanol at 250 °C was about 4.18 times higher than that of commercial TiO2 powder at the optimum operating temperature of 275 °C. Moreover, TiO2 nanotablets also displayed high stability and ethanol selectivity. The special porous structure, high valence state of absorbed oxygen species, and formation of rutile–anatase n–n junctions can enhance the resistance modulation of MOF-based TiO2 nanotablets, contributing to their excellent ethanol sensing properties.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11574189, 11604196, and 11604252), the Science and Technology Program of Shaanxi Province (Nos. 2019JM-102, 2016KJXX-15, and 2017JQ1015), the Fundamental Research Funds for the Central Universities (Nos. GK201602006, GK201801005, and 2018CBLZ002), and the Start-Up Funds of Xi’an Polytechnic University (No. BS15026).

Supplementary material

10854_2019_2142_MOESM1_ESM.docx (461 kb)
Supplementary material 1 (DOCX 461 kb)

References

  1. 1.
    M.M. Rahman, M.M. Alam, A.M. Asiri, M.A. Islam, Ethanol sensor development based on ternary–doped metal oxides (CdO/ZnO/Yb2O3) nanosheets for environmental safety. RSC Adv. 7, 22627 (2017)CrossRefGoogle Scholar
  2. 2.
    A. Mirzaei, S.G. Leonardi, G. Neri, Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: a review. Ceram. Int. 42, 15119 (2016)CrossRefGoogle Scholar
  3. 3.
    R.B. Ayed, M. Ajili, J.M. Garcia, A. Labidi, Physical properties investigation and gas sensing mechanism of Al: Fe2O3 thin films deposited by spray pyrolysis. Superlattice Microstruct. 129, 91 (2019)CrossRefGoogle Scholar
  4. 4.
    T.J. Qi, X. Yang, J. Sun, Neck-connected ZnO films derived from core-shell zeolitic imidazolate framework-8 (ZIF-8)@ZnO for highly sensitive ethanol gas sensors. Sens. Actuators B 283, 93 (2019)CrossRefGoogle Scholar
  5. 5.
    S. Vijayakumar, S. Vadivel, Fiber optic ethanol gas sensor based WO3 and WO3/gC3N4 nanocomposites by a novel microwave technique. Opt. Laser Technol. 118, 44 (2019)CrossRefGoogle Scholar
  6. 6.
    G. Singh, R.C. Virpal, Singh, Highly sensitive gas sensor based on Er-doped SnO2 nanostructures and its temperature dependent selectivity towards hydrogen and ethanol. Sens. Actuators B 282, 373 (2019)CrossRefGoogle Scholar
  7. 7.
    W.L. Yu, W. Zeng, Y.Q. Li, A nest-like TiO2 nanostructures for excellent performance ethanol sensor. Mater. Lett. 248, 82 (2019)CrossRefGoogle Scholar
  8. 8.
    Y.L. Wang, S. Tan, J. Wang, Z.J. Tan, Q.X. Wu, Z. Jiao, M.H. Wu, The gas sensing properties of TiO2 nanotubes synthesized by hydrothermal method. Chin. Chem. Lett. 22, 603 (2011)CrossRefGoogle Scholar
  9. 9.
    A.N. Banerjee, The design, fabrication, and photocatalytic utility of nanostructured semiconductors: focus on TiO2-based nanostructures. Nanotechnology 4, 35 (2011)Google Scholar
  10. 10.
    C.D. Pascali, M.A. Signore, A. Taurino, L. Francioso, A. Macagnano, J. Avossa, P. Siciliano, S. Capone, Investigation of the gas-sensing performanceof electrospun TiO2 nanofiber-based sensors for ethanol sensing. IEEE Sens. J. 18, 7365 (2018)CrossRefGoogle Scholar
  11. 11.
    Y.C. Liang, N.C. Xu, Synthesis of TiO2–ZnS nanocomposites via sacrificial template sulfidation and their ethanol gas-sensing performance. RSC Adv. 8, 22437 (2018)CrossRefGoogle Scholar
  12. 12.
    Y.J. Chen, G. Xiao, T.S. Wang, F. Zhang, Y. Ma, P. Gao, C.L. Zhu, E.D. Zhang, Z. Xu, Q.H. Li, Synthesis and enhanced gas sensing properties of crystalline CeO2/TiO2 core/shell nanorods. Sens. Actuators B 156, 867 (2011)CrossRefGoogle Scholar
  13. 13.
    Z. Li, A.A. Haidry, Y.S. Liu, L.C. Sun, L.J. Xie, Q. Fatima, Z.J. Yao, Strongly coupled Ag/TiO2 heterojunction: from one-step facile synthesis to effective and stable ethanol sensing performances. J. Mater. Sci.: Mater. Electron. 29, 19219 (2018)Google Scholar
  14. 14.
    F.X. Coudert, J.D. Evans, Nanoscale metamaterials: meta-MOFs and framework materials with anomalous behavior. Coord. Chem. Rev. 388, 48 (2019)CrossRefGoogle Scholar
  15. 15.
    C.X. Li, Z.Q. Li, Q. Li, Z.W. Zhang, S.H. Dong, L.W. Yin, MOFs derived hierarchically porous TiO2 as effective chemical and physical immobilizer for sulfur species as cathodes for high-performance lithium-sulfur batteries. Electrochim. Acta 215, 689 (2016)CrossRefGoogle Scholar
  16. 16.
    W. Jiao, J.X. Zhu, Y. Ling, M.L. Deng, Y.M. Zhou, P.Y. Feng, Photoelectrochemical properties of MOF-induced surface-modified TiO2 photoelectrode. Nanoscale 10, 20339 (2018)CrossRefGoogle Scholar
  17. 17.
    H.L. Zheng, H. Yi, H. Dai, D.D. Fang, Z.S. Hong, D.M. Lin, X.Q. Zheng, Y.Y. Lin, Fluoro-coumarin silicon phthalocyanine sensitized integrated electrochemiluminescence bioprobe constructed on TiO2 MOFs for the sensing of deoxynivalenol. Sens. Actuators B 269, 27 (2018)CrossRefGoogle Scholar
  18. 18.
    X. Xin, J.N. Zhang, C.J. Chen, G. Li, J. Qin, Z.B. Yang, H.B. Lu, J.Z. Gao, C.L. Wang, Z. He, UV-activated porous Zn2SnO4 nanofibers for selective ethanol sensing at low temperatures. J. Alloys Compd. 780, 228 (2019)CrossRefGoogle Scholar
  19. 19.
    J. Gao, S.M. Wang, H.M. Zhang, T. Zhang, Facile construction of Co3O4 porous microspheres with enhanced acetone gas sensing performances. Mater. Sci. Semicond. Process. 101, 10 (2019)CrossRefGoogle Scholar
  20. 20.
    J.N. Zhang, H.B. Lu, C. Liu, C.J. Chen, X. Xin, Porous NiO–WO3 heterojunction nanofibers fabricated by electrospinning with enhanced gas sensing properties. RSC Adv. 7, 40499 (2017)CrossRefGoogle Scholar
  21. 21.
    C. Liu, H.B. Lu, J.N. Zhang, J.Z. Gao, G.Q. Zhu, Z.B. Yang, F. Yin, C.L. Wang, Crystal facet-dependent p-type and n-type sensing responses of TiO2 nanocrystals. Sens. Actuators B 263, 557 (2018)CrossRefGoogle Scholar
  22. 22.
    D. Koziej, N. Barsan, U. Weimar, J. Szuber, K. Shimanoe, N. Yamazoe, Water–oxygen interplay on tin dioxide surface: implication on gas sensing. Chem. Phys. Lett. 410, 321 (2005)CrossRefGoogle Scholar
  23. 23.
    Z.Y. Li, W.G. Chen, W. Zeng, Gas-sensing properties of various low dimensional nanostructures of TiO2. J. Mater. Sci.: Mater. Electron. 26, 1554 (2015)Google Scholar
  24. 24.
    G. Li, X. Zhang, H. Lu, C. Yan, K.X. Chen, H.B. Lu, J.Z. Gao, Z.B. Yang, G.Q. Zhu, C.L. Wang, Z. He, Ethanol sensing properties and reduced sensor resistance using porous Nb2O5–TiO2 n-n junction nanofibers. Sens. Actuators B 283, 602 (2019)CrossRefGoogle Scholar
  25. 25.
    R. Zhang, T. Zhang, T.T. Zhou, L.L. Wang, Rapid sensitive sensing platform based on yolk-shell hybrid hollow sphere for detection of ethanol. Sens. Actuators B 256, 479 (2018)CrossRefGoogle Scholar
  26. 26.
    Y. Wang, Y. Zhou, C.M. Meng, Z. Gao, X.X. Gao, X.H. Li, L. Xu, W.J. Zhu, X.S. Peng, B.T. Zhang, Y.F. Lin, L.X. Liu, A high-response ethanol gas sensor based on one-dimensional TiO2/V2O5 branched nanoheterostructures. Nanotechnology 27, 425503 (2016)CrossRefGoogle Scholar
  27. 27.
    L. Pan, H. Huang, C.K. Lim, Q.Y. Hong, M.S. Tse, O.K. Tan, TiO2 rutile–anatase core–shell nanorod and nanotube arrays for photocatalytic applications. RSC Adv. 3, 3566 (2013)CrossRefGoogle Scholar
  28. 28.
    K. Zakrzewska, M. Radecka, TiO2-based nanomaterials for gas sensing—influence of anatase and rutile contributions. Nanoscale Res. Lett. 12, 1 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Physics and Information TechnologyShaanxi Normal UniversityXi’anChina
  2. 2.School of ScienceXi’an Polytechnic UniversityXi’anChina

Personalised recommendations