Advertisement

Strong red emission and enhanced electrical properties in Pr-doped SrBi4Ti4O15 multifunctional ceramics

  • Lei Yu
  • Jigong HaoEmail author
  • Wei Li
  • Peng Fu
  • Wenzhi Sun
  • Chong Chen
  • Zhijun Xu
  • Ruiqing ChuEmail author
Article
  • 19 Downloads

Abstract

Pr3+-modified SrBi4Ti4O15 ceramics were prepared using a conventional solid-state reaction method. The modified ceramics simultaneously exhibited both visible photoluminescence and enhanced electrical properties. In visible light, ceramics exhibited a strong red emission peak at 610 nm corresponding to the inter-4f transition 1D2 → 3H4 due to the absence of inversion symmetry at Pr3+ sites. This red luminescence is greatly potential in various display devices. Meanwhile, samples modified by Pr3+ in x = 0.002 showed a large piezoelectric constant of 20pC/N and a remnant polarization of 22.78 μC/cm2, as well as a high Curie temperature value of 511 °C and excellent piezoelectric temperature stability. Moreover, the Pr3+-modified SrBi4Ti4O15 ceramics show a fatigue-free polarization behavior. All these advantages may expand the application fields of the materials as multifunctional devices by integrating their luminescent and piezoelectric properties.

Notes

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2016YFB0402701), Focus on Research and Development Plan in Shandong Province (No. 2017GGX202008), the Project of Shandong Province Higher Educational Science and Technology Program (Nos. J17KA005), National Natural Science Foundation of China (Nos. 51701091, 51802137, 21603092), the Natural Science Foundation of Shandong Province of China (ZR2016EMM02, ZR2017PB003, ZR2018PEM009).

References

  1. 1.
    J.G. Hao, W. Li, J. Zhai, H. Chen, Mater. Sci. Eng. 135, 1–57 (2019)CrossRefGoogle Scholar
  2. 2.
    D.F. Peng, H.Q. Sun, X.S. Wang, J.C. Zhang, M.M. Tang, X. Yao, J. Alloy. Compd. 511, 159–162 (2012)CrossRefGoogle Scholar
  3. 3.
    J.G. Hao, Z.J. Xu, R.Q. Chu, W. Li, J. Du, J. Appl. Phys. 117, 194104 (2015)CrossRefGoogle Scholar
  4. 4.
    Q.W. Zhang, Y. Zhang, H.Q. Sun, Q. Sun, X.S. Wang, X.H. Hao, S.L. An, J. Eur. Ceram. Soc. 37, 955–966 (2017)CrossRefGoogle Scholar
  5. 5.
    P. Nayak, T. Badapanda, S. Panigrahi, Mater. Lett. 172, 32–35 (2016)CrossRefGoogle Scholar
  6. 6.
    Z.P. Cao, C.M. Wang, K. Lau, Q. Wang, Q.W. Fu, H.H. Tian, Ceram. Int. 42, 11619–11625 (2016)CrossRefGoogle Scholar
  7. 7.
    A.R. James, Ceram. Int. 41, 5100–5106 (2015)CrossRefGoogle Scholar
  8. 8.
    D. Peng, H. Zou, C. Xu, X. Wang, X. Yao, J. Alloys Compd. 552, 463–468 (2013)CrossRefGoogle Scholar
  9. 9.
    Z.R. Yao, R.Q. Chu, Z.J. Xu, J.G. Hao, J. Du, G.R. Li, Mater. Lett. 180, 252–255 (2016)CrossRefGoogle Scholar
  10. 10.
    P. Nayak, T. Badapanda, S. Panigrahi, J. Mater. Sci. 28, 625–632 (2017)Google Scholar
  11. 11.
    H.L. Du, C.Y. Ma, W.X. Ma, H.T. Wang, Process. Appl. Ceram. 12, 303–312 (2018)CrossRefGoogle Scholar
  12. 12.
    P. Nayak, A.K. Singh, Ceram. Inter. 44, 22840–22849 (2018)CrossRefGoogle Scholar
  13. 13.
    U. Ravikiran, P. Sarah, M. Buchi Suresh, E. Zacharias, Ferroelectrics 537(1), 237–245 (2018)CrossRefGoogle Scholar
  14. 14.
    D.F. Peng, H. Zou, C.N. Xu, X.S. Wang, X. Yao, J. Lin, T.T. Sun, AIP Adv. 2, 042187 (2012)CrossRefGoogle Scholar
  15. 15.
    L. Yu, J.G. Hao, Z.J. Xu, W. Li, R.Q. Chu, J. Electron. Mater. 46, 4398–4403 (2017)CrossRefGoogle Scholar
  16. 16.
    L. Yu, J.G. Hao, Z.J. Xu, W. Li, R.Q. Chu, J. Mater. Sci. 28, 5840–5845 (2016)Google Scholar
  17. 17.
    L. Yu, J.G. Hao, Z.J. Xu, W. Li, R.Q. Chu, Mater. Chem. Phys. 203, 82–88 (2018)CrossRefGoogle Scholar
  18. 18.
    L. Yu, J.G. Hao, Z.J. Xu, W. Li, R.Q. Chu, J. Mater. Sci. 28, 16341–16347 (2017)Google Scholar
  19. 19.
    Q.W. Zhang, H.Q. Sun, X.S. Wang, T. Zhang, Mater. Lett. 117, 283–285 (2014)CrossRefGoogle Scholar
  20. 20.
    X. Jiang, X. Jiang, C. Chen, N. Tu, Y. Chen, B. Zhang, J. Am. Ceram. Soc. 99, 1332–1339 (2016)CrossRefGoogle Scholar
  21. 21.
    C. Xue, X. Sun, Y. Zhang, Y. Zhao, H. Zhu, Q. Yang, M.L. Liu, C.M. Wang, J. Ouyang, Natural-superlattice structured CaBi2Nb2O9-Bi4Ti3O12 ferroelectric thin films. Ceram. Int. 43, 8459 (2017)CrossRefGoogle Scholar
  22. 22.
    J. Hou, R.V. Kumar, Y. Qu, D. Krsmanovic, Scripta Mater. 61, 664–667 (2009)CrossRefGoogle Scholar
  23. 23.
    C.L. Diao, J.B. Xu, H.W. Zheng, L. Fang, Y.Z. Gu, W.F. Zhang, Ceram. Int. 39(6), 6991–6995 (2013)CrossRefGoogle Scholar
  24. 24.
    L. Ma, K. Zhao, J. Li, Q. Wu, M. Zhao, C. Wang, J. Rare. Earth. 27, 496–500 (2009)CrossRefGoogle Scholar
  25. 25.
    D. Peng, H. Sun, X. Wang, J. Zhang, M. Tang, X. Yao, Mater. Sci. Eng. 176, 1513–1516 (2011)CrossRefGoogle Scholar
  26. 26.
    E. Subbarao, J. Am. Ceram. Soc. 45, 166–169 (1962)CrossRefGoogle Scholar
  27. 27.
    Y. Shimakawa, Y. Kubo, Y. Nakagawa, T. Kamiyama, H. Asano, F. Izumi, Appl. Phys. Lett. 74, 1904–1906 (1999)CrossRefGoogle Scholar
  28. 28.
    Y. Shimakawa, Y. Kubo, Y. Nakagawa, T. Kamiyama, H. Asano, F. Izumi, Appl. Phys. Lett. 77, 2749–2751 (2000)CrossRefGoogle Scholar
  29. 29.
    T. Sivakumar, M. Itoh, J. Mater. Chem. 21, 10865–10870 (2011)CrossRefGoogle Scholar
  30. 30.
    J. Mercurio, A. Souirti, M. Manier, B. Frit, Mater. Res. Bull. 27, 123–128 (1992)CrossRefGoogle Scholar
  31. 31.
    X.P. Jiang, X.L. Fu, C. Chen, N. Tu, M.Z. Xu, X.H. Li, J. Adv. Ceram. 4, 54–60 (2015)CrossRefGoogle Scholar
  32. 32.
    P. Fang, Z. Xi, W. Long, X. Li, S. Chen, Solid State Commun. 231, 1–5 (2016)CrossRefGoogle Scholar
  33. 33.
    Z.H. Peng, X.X. Zeng, F. Cao, X. Yang, J. Alloy. Compd. 695, 626–631 (2017)CrossRefGoogle Scholar
  34. 34.
    J.G. Hao, Z.J. Xu, R.Q. Chu, W. Li, J. Du, J. Alloys Compd. 647, 857–865 (2015)CrossRefGoogle Scholar
  35. 35.
    G. Liu, J. Yuan, R. Nie, L.M. Jiang, Z. Tan, J.G. Zhu, Q. Chen, J. Alloy. Compd. 697, 380–387 (2017)CrossRefGoogle Scholar
  36. 36.
    P. Fang, P. Liu, Z. Xi, W. Long, X. Li, J. Alloys Compd. 595, 148–152 (2014)CrossRefGoogle Scholar
  37. 37.
    Z. Peng, Y. Chen, Q. Chen, N. Li, X. Zhao, C. Kou, J. Alloys Compd. 590, 210–214 (2014)CrossRefGoogle Scholar
  38. 38.
    J.G. Hao, Z.J. Xu, R.Q. Chu, W. Li, J. Du, P. Fu, RSC Adv. 5, 82605–82616 (2015)CrossRefGoogle Scholar
  39. 39.
    H. Zou, Y. Hu, X. Zhu, Y. Sui, X. Wang, Z. Song, Ferroelectrics 488, 62–70 (2015)CrossRefGoogle Scholar
  40. 40.
    H. Zou, X. Hui, X. Wang, D. Peng, J. Li, Y. Li, J. Appl. Phys. 114, 223103 (2013)CrossRefGoogle Scholar
  41. 41.
    P. Du, L.H. Luo, W.P. Li, Y.P. Zhang, H.B. Chen, Mater. Sci. Eng. 178, 1219–1223 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringLiaocheng UniversityLiaochengChina
  2. 2.School of Environmental and Materials EngineeringYantai UniversityYantaiChina

Personalised recommendations