Advertisement

Effect of SmFeO3 content on structure and multiferroic properties of mSmFeO3–Bi4Ti3O12 thin films

  • Li Luo
  • Yunfeng Guo
  • Wengang Yan
  • Kaili Liang
  • Qinchao Sun
  • Jie SuEmail author
  • Zongtao ChiEmail author
  • Xiaomei LuEmail author
  • Jinsong Zhu
Article
  • 14 Downloads

Abstract

mSmFeO3–Bi4Ti3O12 (m = 0.5, 1.0, 1.5, 2.0) thin films were prepared on silicon wafer by sol–gel progress. Their structure, leakage current density, ferroelectricity, magnetism, and dielectric property were investigated. All the samples have a single-phase Aurivillius structure. The interplanar spacing and volume of the unit cell decrease with the increase of SmFeO3 content. Moreover, the multiferroic properties have been significantly improved, with 2Prmax ~ 62 μC/cm2 (m = 0.5) and Msmax ~ 5.8 emu/cm3 (m = 2) at room-temperature. The samples with m = 0.5, 1, 1.5 exhibit Ohmic mechanism-dominated conductive behavior, however, for m = 2 sample, the space-charge-limited current mechanism becomes dominant. The dielectric constant εr of the thin films at 1 MHz for m = 0.5, 1.0, 1.5 and 2.0 are 498, 485, 272, and 217 respectively.

Notes

Acknowledgements

Li Luo and Yunfeng Guo contributed equally to this work. This work was supported by projects of NSFC (11374169), The Natural Science Foundation of Shandong Province (ZR2019MA004), and the National Key Research Program of China (2016YFA0201004).

References

  1. 1.
    T.T. Wang, H.M. Deng, W.L. Zhou, S.F. Si, B.L. Guo, X.P. Zheng, P.X. Yang, J.H. Chu, Mater. Lett. 220, 261–265 (2018)CrossRefGoogle Scholar
  2. 2.
    S. Nath, S.K. Barik, S. Hajra, R.N.P. Choudhary, J. Mater. Sci.: Mater. Electron. 29, 12251–12257 (2018)Google Scholar
  3. 3.
    L. Cao, Z.Z. Ding, X.Z. Liu, J.C. Ren, Y.K. Chen, M. Ouyang, X.Q. Chen, F.J. Yang, J. Alloys. Compd. 800, 134–139 (2019)CrossRefGoogle Scholar
  4. 4.
    Y. Li, X.X. Cui, N.N. Sun, J.H. Du, X.W. Li, G.X. Jia, X.H. Hao, Adv. Opt. Mater. 7, 1801105 (2019)CrossRefGoogle Scholar
  5. 5.
    N.A. Hill, J. Phys. Chem. B 104, 6694–6709 (2000)CrossRefGoogle Scholar
  6. 6.
    J.A. Mundy, C.M. Brooks, M.E. Holtz, J.A. Moyer, H. Das, A.F. Re´bola, J.T. Heron, J.D. Clarkson, S.M. Disseler, Z. Liu, Nature 537, 523–527 (2016)CrossRefGoogle Scholar
  7. 7.
    S. Dong, J. Liu, S. Cheong, Z. Ren, Adv. Phys. 64, 519–629 (2015)CrossRefGoogle Scholar
  8. 8.
    H.Y. Zhao, H. Kimura, Z.X. Cheng, M. Osada, J.L. Wang, X.L. Wang, S.X. Dou, Y. Liu, J.D. Yu, T. Matsumoto, T. Tohei, N. Shibata, Y. Ikuhara, Sci. Rep. 4, 5255 (2014)CrossRefGoogle Scholar
  9. 9.
    Y. Noguchi, M. Miyayama, T. Kudo, Phys. Rev. B 63, 214102 (2001)CrossRefGoogle Scholar
  10. 10.
    C.M. Wang, J.F. Wang, Appl. Phys. Lett. 89, 202905 (2006)CrossRefGoogle Scholar
  11. 11.
    X.Z. Zuo, Z. Liu, E.J. He, Z.Z. Hui, J. Yang, X.B. Zhu, J.M. Dai, J. Mater. Sci.: Mater. Electron. 29, 20133–20140 (2018)Google Scholar
  12. 12.
    M. Trassin, J. Phys. Condens. Mater. 28, 033001 (2016)CrossRefGoogle Scholar
  13. 13.
    B.H. Park, B.S. Kang, S.D. Bu, T.W. Noh, J. Lee, W. Jo, Nature 401, 682–684 (1999)CrossRefGoogle Scholar
  14. 14.
    J.S. Kim, S.S. Kim, Appl. Phys. A 81, 1427–1430 (2005)CrossRefGoogle Scholar
  15. 15.
    T. Shigyo, H. Kiyono, J. Nakano, H. Itoh, J. Takahashi, Jpn. Soc. Appl. Phys. 47, 7617–7622 (2008)CrossRefGoogle Scholar
  16. 16.
    A. Srinivas, F.Y.C. Boey, T. Sritharan, Mater. Sci. Eng. B 123, 222–226 (2005)CrossRefGoogle Scholar
  17. 17.
    X.W. Dong, K.F. Wang, J.G. Wan, J.S. Zhu, J.M. Liu, J. Appl. Phys. 103, 094101 (2008)CrossRefGoogle Scholar
  18. 18.
    J. Su, Y.Z. Long, Q. Li, C.J. Lu, K.L. Liang, J. Li, L. Luo, L.J. Sun, X.M. Lu, J.S. Zhu, J. Alloys. Compd. 747, 1002–1007 (2018)CrossRefGoogle Scholar
  19. 19.
    Y. Li, C.J. Lu, J. Su, Y.C. Zhang, C. Zhang, S.F. Zhao, X.X. Wang, D.J. Zhang, J. Alloys. Compd. 687, 707–711 (2016)CrossRefGoogle Scholar
  20. 20.
    D.L. Zhang, L. Feng, W.C. Huang, W.B. Zhao, Z.W. Chen, X.G. Li, J. Appl. Phys. 120, 154105 (2016)CrossRefGoogle Scholar
  21. 21.
    S. Gupta, R. Medwal, S.P. Pavunny, D. Sanchez, R.S. Katiyar, Ceram. Int. 44, 4198–4203 (2018)CrossRefGoogle Scholar
  22. 22.
    X.X. Wang, X.Y. Cheng, S. Gao, J.D. Song, K.Q. Ruan, X.G. Li, J. Magn. Magn. Mater. 399, 170–174 (2016)CrossRefGoogle Scholar
  23. 23.
    B. Deka, S. Ravi, D. Pamu, Ceram. Int. 43, 16580–16592 (2017)CrossRefGoogle Scholar
  24. 24.
    E. Jartych, T. Pikula, M. Mazurek, A. Lisinska-Czekaj, D. Czekaj, K. Gaska, J. Przewoznik, C. Kapusta, Z. Surowiec, J. Magn. Magn. Mater. 342, 27–34 (2013)CrossRefGoogle Scholar
  25. 25.
    J.B. Li, Y.P. Huang, H.B. Jin, G.H. Rao, J.K. Liang, J. Am. Ceram. Soc. 96, 3920–3925 (2013)CrossRefGoogle Scholar
  26. 26.
    M.A. Zurbuchen, R.S. Freitas, M.J. Wilson, P. Schiffer, M. Roeckerath, J. Schubert, M.D. Biegalski, G.H. Mehta, D.J. Comstock, J.H. Lee, Y. Jia, D.G. Schlom, Appl. Phys. Lett. 91, 033113 (2007)CrossRefGoogle Scholar
  27. 27.
    X.Y. Mao, W. Wang, X.B. Chen, Solid State Commun. 147, 186–189 (2008)CrossRefGoogle Scholar
  28. 28.
    A. Srinivas, M.M. Kumar, S.V. Suryanarayana, T. Bhimasankaram, Mater. Res. Bull. 34, 989–996 (1999)CrossRefGoogle Scholar
  29. 29.
    A. Srinivas, D.-W. Kim, K.S. Hong, S.V. Suryanarayana, Mater. Res. Bull. 39, 55–61 (2004)CrossRefGoogle Scholar
  30. 30.
    F.X. Wu, Z. Chen, Y.B. Chen, S.T. Zhang, J. Zhou, Y.Y. Zhu, Y.F. Chen, Appl. Phys. Lett. 98, 212501 (2011)CrossRefGoogle Scholar
  31. 31.
    J. Zhou, F.X. Wu, Y.B. Chen, S.T. Zhang, Y.F. Chen, J. Mater. Res. 27, 2956–2964 (2012)CrossRefGoogle Scholar
  32. 32.
    L. Luo, L.J. Sun, Y.Z. Long, X.X. Wang, Q. Li, K.L. Liang, J.L. Zhao, W.G. Yan, Q.C. Sun, J. Su, X.M. Lu, J.S. Zhu, J. Mater. Sci.: Mater. Electron. 30, 9945–9954 (2019)Google Scholar
  33. 33.
    J.H. Li, Y. Qiao, X.L. Liu, C.J. Nie, C.J. Lu, Z.X. Xu, S.M. Wang, N.X. Zhang, D. Xie, H.C. Yu, J.Q. Li, Appl. Phys. Lett. 15, 3193 (2004)CrossRefGoogle Scholar
  34. 34.
    J. Paul, S. Bhardwaj, K.K. Sharma, R.K. Kotnala, R. Kumar, J. Alloys. Compd. 634, 58–64 (2015)CrossRefGoogle Scholar
  35. 35.
    J. Paul, S. Bhardwaj, K.K. Sharma, R.K. Kotnala, R. Kumar, J. Mater. Sci. 49, 6056–6066 (2014)CrossRefGoogle Scholar
  36. 36.
    Z. Zhong, H. Ishiwara, Appl. Phys. Lett. 95, 112902 (2009)CrossRefGoogle Scholar
  37. 37.
    S.W. Yi, S.S. Kim, J.W. Kim, H.K. Jo, D. Do, W.J. Kim, Thin Solid Films 517, 6737–6741 (2009)CrossRefGoogle Scholar
  38. 38.
    M.A. Lampert, P. Mark, Current injection in solids (Academic Press, New York, 1970)Google Scholar
  39. 39.
    H.Y. Zhao, K. Cai, Z.X. Cheng, T.T. Jia, H. Kimura, Z.B. Ma, Q.M. Fu, Z.D. Huang, T. Matsumoto, T. Tohei, N. Shibata, Y. Ikuhara, Adv. Electron. Mater. 3, 1600254 (2017)CrossRefGoogle Scholar
  40. 40.
    Y.L. Liu, J. Wei, Y.X. Guo, T.T. Yang, Z. Xu, RSC Adv. 6, 96563 (2016)CrossRefGoogle Scholar
  41. 41.
    J.C. Maxwell, Oxford University Press, London (1973)Google Scholar
  42. 42.
    K.W. Wagner, Ann. Phys. 40, 818 (1993)Google Scholar
  43. 43.
    C.G. Koops, Phys. Rev. B 83, 121 (1951)CrossRefGoogle Scholar
  44. 44.
    M.A. El-Hiti, J. Magn. Magn. Mater. 164, 187 (1996)CrossRefGoogle Scholar
  45. 45.
    N. Hur, S. Park, P. Sharma, J. Ahn, S. Guha, S. Cheong, Nature 429, 392–395 (2004)CrossRefGoogle Scholar
  46. 46.
    R.X. Ti, X.M. Lu, H. Ju, F.Z. Huang, H.R. Wu, F. Mei, M. Zhou, Y. Li, T.T. Xu, J.S. Zhu, J. Mater. Chem. C 3, 11868–11873 (2015)CrossRefGoogle Scholar
  47. 47.
    Z.Z. Song, Y.C. Zhang, C.J. Lu, Z.M. Ma, Z.J. Hu, L. Wang, C. Liu, Ceram. Int. 43, 3720–3725 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Physical Science and Key Laboratory of Photonics Materials and Technology in Universities of ShandongQingdao UniversityQingdaoPeople’s Republic of China
  2. 2.School of Electronic and Information EngineeringQingdao UniversityQingdaoPeople’s Republic of China
  3. 3.National Laboratory of Solid State Microstructures, Physics DepartmentNanjing UniversityNanjingPeople’s Republic of China

Personalised recommendations