Advertisement

Fabrication of flexible organic electronic microcircuit pattern using near-field electrohydrodynamic direct-writing method

  • Jianzhou Chen
  • Ting Wu
  • Libing ZhangEmail author
  • Xiaowei Feng
  • Peng Li
  • Fengli Huang
  • Chuncheng Zuo
  • Zhangping Mao
Article
  • 38 Downloads

Abstract

Inorganic materials face enormous challenges in designing and processing flexible devices that can be stretchable, crimped and folded. Organic materials have attracted wide attention because of their flexible properties and advantages in manufacturing flexible electronic devices. In this study, the flexible organic microcircuit pattern of poly (3,4-ethylenedioxythiophene):poly (styrenesulfonate) material was fabricated by using the near-field electrohydrodynamic direct -writing method, the experimental results show that the bending deformation of the flexible substrate with different curvatures has no effect on the conductivity of the microcircuit pattern deposited on the flexible substrate, which has no effect on the performance of the flexible microcircuit pattern. In order to improve the conductivity of the flexible organic electronic microcircuit, the multi-layer microcircuit pattern was fabricated by using the near-field electrohydrodynamic direct-writing method. With the increase of the number of the direct-writing micro-pattern layer, the conductivity of the microcircuit patterns sintered at 105 °C for 10 min increase from 168.32 to 313.05 S/cm. Atomic force microscope was used to observe the morphology of the direct-writing microcircuit patterns. With the increase of the layer number of the microcircuit pattern, the internal density of the microcircuit pattern increases, and the microcircuit-pattern morphology becomes smoother. The experimental results show that the multi-layer direct- writing method can effectively improve the conductivity of the flexible organic electronic microcircuit pattern. This study provides a new method to fabricate the flexible organic microcircuit pattern with high conductivity by a non-contact and low-cost mode.

Notes

Acknowledgements

This work was financially supported by Zhejiang province Science and Technology Program (LGG18E050016), National Natural Science Foundation of China (51775242), National Innovation and Entrepreneurship Training Program for College Students in 2019 (201910354015), Science and Technology Innovation Program and Xin-Miao Talents Program for College Students in Zhejiang Province in 2018 (2018R417036), and Research Training Program for College Students of Jiaxing University in 2018 (SRT2018B009).

References

  1. 1.
    G.S. Jeong, D.H. Baek, H.C. Jung, J.H. Song, J.H. Moon, S.W. Hong, I.Y. Kim, S. Lee, Nat. Commun. 3, 977 (2012)CrossRefGoogle Scholar
  2. 2.
    C. Wang, C. Wang, Z. Huang, S. Xu, Adv. Mater. 30, 1801368 (2018)CrossRefGoogle Scholar
  3. 3.
    Y. Hu, T. Zhao, P. Zhu, Y. Zhang, X. Liang, R. Sun, ChP Wong, Nano Res. 11, 1938 (2018)CrossRefGoogle Scholar
  4. 4.
    M.C. Choi, Y. Kim, C.S. Ha, Prog. Polym. Sci. 33, 581 (2008)CrossRefGoogle Scholar
  5. 5.
    H. Sirringhaus, T.H. Kawase, R. Friend, T. Shimoda, M. Inbasekaran, W. Wu, E.P. Woo, Science 290, 2123 (2000)CrossRefGoogle Scholar
  6. 6.
    L.Y. Zhou, Q. Gao, J.F. Zhan, C.Q. Xie, J.Z. Fu, Y. He, A.C.S. Appl, Mater. Interfaces 10, 23208 (2018)CrossRefGoogle Scholar
  7. 7.
    S. Park, J. Kim, S. Lee, D.Y. Lee, S. Lim, Org. Electron. 52, 165 (2017)CrossRefGoogle Scholar
  8. 8.
    H. Choi, C. Kim, H. Chae, S.M. Cho, Mater. Lett. 214, 1 (2017)CrossRefGoogle Scholar
  9. 9.
    F.C. Krebs, Org. Electron. 10, 761 (2009)CrossRefGoogle Scholar
  10. 10.
    Y. Li, Y. Du, Y. Dou, K. Cai, J. Xu, Synth. Met. 226, 119 (2017)CrossRefGoogle Scholar
  11. 11.
    H. Shi, C. Liu, Q. Jiang, J. Xu, Adv. Electron. Mater. 1, 0282 (2015)Google Scholar
  12. 12.
    J. Huang, P.F. Miller, J.C.D. Mello, A.J. de Mellob, D.D.C. Bradley, Synth. Met. 139, 569 (2003)CrossRefGoogle Scholar
  13. 13.
    A. Benor, S.Y. Takizawa, P. Chen, C. Pérez-Bolivar, P. Anzenbacher, Appl. Phys. Lett. 94, 127 (2009)CrossRefGoogle Scholar
  14. 14.
    J.Y. Kim, J.H. Jung, D.E. Lee, J. Joo, Synth. Met. 126, 311 (2002)CrossRefGoogle Scholar
  15. 15.
    D. Alemumengistie, P.C. Wang, C.W. Chu, J. Mater. Chem. A. 1, 9907 (2013)CrossRefGoogle Scholar
  16. 16.
    W. Maiaugree, A. Karaphun, A. Pimsawad, V. Amornkitbamrung, E. Swatsitang, Energy 154, 182 (2018)CrossRefGoogle Scholar
  17. 17.
    Q. Zafar, S.M. Abdullah, M.I. Azmer, M.A. Najeeb, K.W. Qadir, K. Sulaiman, Sens. Actuat. B: Chem. 255, 2652 (2018)CrossRefGoogle Scholar
  18. 18.
    K. Sun, S. Zhang, P. Li, X. Zhang, D. Du, F.H. Isikgor, J. Ouyang, J. Mater. Sci.: Mater. Electron. 26, 4438 (2015)Google Scholar
  19. 19.
    L. Jun, D. Yong, J. Runping, X. Jiayue, S. Shirley, Materials 10, 780 (2017)CrossRefGoogle Scholar
  20. 20.
    Y.N. Liang, B.K. Lok, L. Wang, C. Feng, A.C.W. Lu, T. Mei, X. Hu, Thin Solid Films 544, 509 (2013)CrossRefGoogle Scholar
  21. 21.
    E.B. Secor, J. Smith, T.J. Marks, M.C. Hersam, A.C.S. Appl, Matter. Interfaces 8, 17428 (2016)CrossRefGoogle Scholar
  22. 22.
    F. Boudoire, R. Toth, J. Heier, A. Braun, E.C. Constable, Appl. Surf. Sci. 305, 62 (2014)CrossRefGoogle Scholar
  23. 23.
    G. Kim, J.H. Shin, H.J. Choi, H. Lee, J. Nanopart. Res. 16, 1 (2014)Google Scholar
  24. 24.
    D.H. Kim, J.H. Ahn, H.S. Kim, J. Lee, T.H. Kim, C.J. Yu, R.G. Nuzzo, J.A. Rogers, IEEE Electron Device Lett. 29, 73 (2007)CrossRefGoogle Scholar
  25. 25.
    S.Y. Min, T.S. Kim, B.J. Kim, H. Cho, Y.Y. Noh, H. Yang, J.H. Cho, T.W. Lee, Nat. Commun. 4, 1773 (2013)CrossRefGoogle Scholar
  26. 26.
    Y.J. Jeong, H. Lee, B.S. Lee, S. Park, H.T. Yudistira, C.L. Choong, J.J. Park, C.E. Park, D. Byun, A.C.S. Appl, Matter. Interfaces 6, 10736 (2014)CrossRefGoogle Scholar
  27. 27.
    Y.J. Jeong, J. Bae, S. Nam, S. Lim, J. Jang, S.H. Kim, C.E. Park, A.C.S. Appl, Matter. Interfaces 6, 10736 (2014)CrossRefGoogle Scholar
  28. 28.
    K. Kim, G. Kim, B.R. Lee, S. Ji, S.Y. Kim, B.W. An, M.H. Song, J.U. Park, Nanoscale 7, 13410 (2015)CrossRefGoogle Scholar
  29. 29.
    S. Xu, Y. Zhang, J. Cho, J. Lee, X. Huang, L. Jia, J.A. Fan, Y. Su, J. Su, H. Zhang, H. Cheng, B. Lu, C. Yu, C. Chuang, T. Kim, T. Song, K. Shigeta, S. Kang, C. Dagdeviren, I. Petrov, P.V. Braun, Y. Huang, U. Paik, J.A. Rogers, Nat. Commun. 4, 1543 (2013)CrossRefGoogle Scholar
  30. 30.
    Y. Kim, S. Jang, J.H. Oh, Appl. Phys. Lett. 106, 1261 (2015)Google Scholar
  31. 31.
    S. Son, S. Lee, J. Choi, J. Electrost. 72, 70 (2014)CrossRefGoogle Scholar
  32. 32.
    V.D. Nguyen, D. Byun, Appl. Phys. Lett. 94, 173509 (2009)CrossRefGoogle Scholar
  33. 33.
    H. Qin, J. Dong, Y.S. Lee, Robot. Comput. Integr. Manuf. 43, 179 (2017)CrossRefGoogle Scholar
  34. 34.
    S.I. Na, G. Wang, S.S. Kim, T.W. Kim, S.H. Oh, B.K. Yu, T. Lee, D.T. Kim, J. Mater. Chem. 19, 9045 (2009)CrossRefGoogle Scholar
  35. 35.
    K.D. Harris, A.L. Elias, H.J. Chung, J. Mater. Sci. 51, 2771 (2016)CrossRefGoogle Scholar
  36. 36.
    H. Yan, T. Jo, H. Okuzaki, Polym. J. 41, 1028 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jianzhou Chen
    • 1
  • Ting Wu
    • 1
  • Libing Zhang
    • 1
    Email author
  • Xiaowei Feng
    • 1
  • Peng Li
    • 1
  • Fengli Huang
    • 1
  • Chuncheng Zuo
    • 1
  • Zhangping Mao
    • 1
  1. 1.College of Mechanical and Electrical EngineeringJiaxing UniversityJiaxingChina

Personalised recommendations