Advertisement

Evolution of phase structure, microstructure and piezoelectric properties in (1 − x)(K0.4Na0.6)Nb0.96Sb0.04O3xCa0.1(Bi0.5K0.5)0.9ZrO3 lead-free ceramics

  • Yunyi Liu
  • You Ding
  • Xiaoyang Du
  • Meng Shi
  • Caiwang He
  • Jingchuan Li
  • Xiaowei Dai
  • Zunping Xu
  • Yi ChenEmail author
Article
  • 13 Downloads

Abstract

New lead-free piezoelectric (1 − x)(K0.4Na0.6)Nb0.96Sb0.04O3xCa0.1(Bi0.5K0.5)0.9ZrO3 ceramics were projected and prepared by using traditional ceramic preparation techniques, and we investigated the effects of Ca0.1(Bi0.5K0.5)0.9ZrO3 content on their surface microstructure, phase structure and electrical properties. A phase pure perovskite structure was obtained for the ceramics within the studied composition range of 0 ≤ x ≤ 0.06, according to X-ray diffraction analysis. Additionally, it was found that adding Ca0.1(Bi0.5K0.5)0.9ZrO3 into the ceramics caused a gradual evolution in the phase structure, and a rhombohedral-tetragonal phase boundary was identified at the composition x = 0.04. The ceramics showed an enhanced piezoelectric activity with compositions near the phase boundary. Furthermore, the phase diagram of the (1 − x)(K0.4Na0.6)Nb0.96Sb0.04O3xCa0.1(Bi0.5K0.5)0.9ZrO3 solid solution was built up by combining the X-ray diffraction analysis with the measurement results of the temperature-dependent dielectric behavior. These results indicate that the structural state of (K,Na)NbO3-based ceramics can be easily altered by using a suitable amount of Ca0.1(Bi0.5K0.5)0.9ZrO3 as additive, which will benefit the improvement of piezoelectric properties for such lead-free materials.

Notes

Acknowledgements

This work was supported by the Research Project of Chongqing Municipal Education Commission (No. yjg183037). The authors are also grateful for the grant support provided by the “Zeng Sumin Cup” Research Project of School of Materials and Energy, Southwest University, China.

References

  1. 1.
    G.H. Haertling, Ferroelectric ceramics: history and technology. J. Am. Ceram. Soc. 82, 797–818 (1999)CrossRefGoogle Scholar
  2. 2.
    J.G. Wu, Advances in Lead-free Piezoelectric Materials (Springer Nature Singapore Pte Ltd., Singapore, 2018)CrossRefGoogle Scholar
  3. 3.
    P.J. Landrigan, P. Boffetta, P. Apostoli, The reproductive toxicity and carcinogenicity of lead: a critical review. Am. J. Ind. Med. 38, 231–243 (2000)CrossRefGoogle Scholar
  4. 4.
    T. Zheng, J.G. Wu, D.Q. Xiao, J.G. Zhu, Recent development in lead-free perovskite piezoelectric bulk materials. Prog. Mater Sci. 98, 552–624 (2018)CrossRefGoogle Scholar
  5. 5.
    J. Rödel, J.F. Li, Lead-free piezoceramics: status and perspectives. MRS Bull. 43, 576–580 (2018)CrossRefGoogle Scholar
  6. 6.
    J. Rödel, W. Jo, K.T.P. Seifert, E.M. Anton, T. Granzow, D. Damjanovic, Perspective on the development of lead-free piezoceramics. J. Am. Ceram. Soc. 92, 1153–1177 (2009)CrossRefGoogle Scholar
  7. 7.
    J.G. Wu, D.Q. Xiao, J.G. Zhu, Potassium–sodium niobate lead-free piezoelectric ceramics: recent advances and perspectives. J. Mater. Sci. 26, 9297–9308 (2015)Google Scholar
  8. 8.
    J.G. Wu, D.Q. Xiao, J.G. Zhu, Potassium–sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chem. Rev. 115, 2559–2595 (2015)CrossRefGoogle Scholar
  9. 9.
    J.F. Li, K. Wang, F.Y. Zhu, L.Q. Cheng, F.Z. Yao, (K, Na)NbO3-based lead-free piezoceramics: fundamental aspects, processing technologies, and remaining challenges. J. Am. Ceram. Soc. 96, 3677–3696 (2013)CrossRefGoogle Scholar
  10. 10.
    Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Lead-free piezoceramics. Nature 432, 84–87 (2004)CrossRefGoogle Scholar
  11. 11.
    L.M. Jiang, Y.Y. Li, L.X. Xie, J.G. Wu, Q. Chen, W. Zhang, D.Q. Xiao, J.G. Zhu, Enhanced electrical properties and good thermal stability in K0.48Na0.52NbO3–LiNbO3–BiAlO3 lead-free piezoceramics. J. Mater. Sci. 28, 8500–8509 (2017)Google Scholar
  12. 12.
    Y. Chen, D.D. Xue, Z.Q. Chen, X.Q. Jiang, J. Gou, G. Liu, X.K. Liu, Z.P. Xu, Lithium-modified (K0.5Na0.5)NbO3–BiAlO3 lead-free piezoelectric ceramics with high Curie temperature. Ceram. Int. 43, 634–640 (2017)CrossRefGoogle Scholar
  13. 13.
    R.P. Wang, H. Bando, T. Katsumata, Y. Inaguma, H. Taniguchi, M. Itoh, Tuning the orthorhombic-rhombohedral phase transition temperature in sodium potassium niobate by incorporating barium zirconate. Phys. Status Solidi RRL 3, 142–144 (2009)CrossRefGoogle Scholar
  14. 14.
    H.L. Du, W.C. Zhou, F. Luo, D.M. Zhu, S.B. Qu, Z.B. Pei, Perovskite lithium and bismuth modified potassium–sodium niobium lead-free ceramics for high temperature applications. Appl. Phys. Lett. 91, 182909 (2007)CrossRefGoogle Scholar
  15. 15.
    S.J. Zhang, R. Xia, T.R. Shrout, G.Z. Zang, J.F. Wang, Characterization of lead free (K0.5Na0.5)NbO3–LiSbO3 piezoceramic. Solid State Commun. 141, 675–679 (2007)CrossRefGoogle Scholar
  16. 16.
    Y.P. Guo, K. Kakimoto, H. Ohsato, Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3–LiNbO3 ceramics. Appl. Phys. Lett. 85, 4121–4123 (2004)CrossRefGoogle Scholar
  17. 17.
    Y.Y. Liu, Y.H. Yi, Y.G. Yu, Y.Q. Pan, C.W. He, X.K. Liu, Z.P. Xu, G. Liu, Y. Chen, Microstructures, phase evolution and electrical properties of (1–x)K0.40Na0.60Nb0.96Sb0.04O3-xBi0.5K0.5HfO3 lead-free ceramics. Ceram. Int. 45, 6328–6334 (2019)CrossRefGoogle Scholar
  18. 18.
    Y. Chen, Y.Y. Liu, D.D. Xue, Z.P. Xu, G. Liu, X.K. Liu, Z.Q. Chen, X.Q. Jiang, Effects of BaHfO3 addition on the phase transition and piezoelectric properties of (K, Na)NbO3-based ceramics. J. Alloy. Compd. 735, 68–74 (2018)CrossRefGoogle Scholar
  19. 19.
    T. Zheng, H.J. Wu, Y. Yuan, X. Lv, Q. Li, T.L. Men, C.L. Zhao, D.Q. Xiao, J.G. Wu, K. Wang, J.F. Li, Y.L. Gu, J.G. Zhu, S.J. Pennycook, The structural origin of enhanced piezoelectric performance and stability in lead free ceramics. Energy Environ. Sci. 10, 528–537 (2017)CrossRefGoogle Scholar
  20. 20.
    B. Wu, H.J. Wu, J.G. Wu, D.Q. Xiao, J.G. Zhu, S.J. Pennycook, Giant piezoelectricity and high Curie temperature in nanostructured alkali niobate lead-free piezoceramics through phase coexistence. J. Am. Chem. Soc. 138, 15459–15464 (2016)CrossRefGoogle Scholar
  21. 21.
    K. Xu, J. Li, X. Lv, J.G. Wu, X.X. Zhang, D.Q. Xiao, J.G. Zhu, Superior piezoelectric properties in potassium–sodium niobate lead-free ceramics. Adv. Mater. 28, 8519–8523 (2016)CrossRefGoogle Scholar
  22. 22.
    Y.Q. Pan, Y.G. Yu, Y.H. Yi, Y.Y. Liu, J.C. Li, X.W. Dai, C.W. He, X.K. Liu, Y. Chen, Structural evolution and electrical properties of lead-free (1–x)(K0.4Na0.6)Nb0.96Sb0.04O3-xBa0.1(Bi0.5Na0.5)0.9ZrO3 ceramics. Phys. B 558, 122–126 (2019)CrossRefGoogle Scholar
  23. 23.
    D.D. Xue, Y.Y. Liu, M. Shi, P. Wang, L.Y. Zhang, G. Liu, Z.Q. Chen, Y. Chen, Composition dependence of phase structure and piezoelectric properties in (0.98 − x)(K0.4Na0.6)NbO3 − 0.02CaZrO3– xBi0.5Na0.5HfO3 ternary ceramics. J. Mater. Sci. 29, 2072–2079 (2018)Google Scholar
  24. 24.
    Y. Chen, D.D. Xue, P. Wang, X.Q. Jiang, Z.Q. Chen, X.K. Liu, G. Liu, Z.P. Xu, Lead-free K0.5Na0.5NbO3–Bi0.5Li0.5ZrO3–BiAlO3 ternary ceramics: structure and piezoelectric properties. J. Electroceram. 40, 36–41 (2018)CrossRefGoogle Scholar
  25. 25.
    K. Wang, B. Malič, J.G. Wu, Shifting the phase boundary: potassium sodium niobate derivates. MRS Bull. 43, 607–611 (2018)CrossRefGoogle Scholar
  26. 26.
    N. Hussain, K. Sinha, A.J. Dhankhar, B. Joseph, Kumar, Giant piezoelectric behavior in relaxor ferroelectric environment friendly Na0.52K0.44Li0.04Nb0.84Ta0.10Sb0.06O3 ceramics for high temperature applications. J. Mater. Sci. 29, 6403–6411 (2018)Google Scholar
  27. 27.
    J. Wu, J. Ma, W. Wu, M. Chen, Phase structure and electrical properties of (1 − xy)K1−zNazNbO3 − x(0.8Bi0.5Na0.5ZrO3 − 0.2Bi0.5K0.5ZrO3) − yBiFeO3 lead-free ceramics. J. Mater. Sci. 28, 14049–14057 (2017)Google Scholar
  28. 28.
    Y.Y. Wang, N.X. Xu, Q.L. Zhang, H. Yang, Phase transition and piezoelectric properties of alkali niobate ceramics through composition tuning. RSC Adv. 5, 61989–61997 (2015)CrossRefGoogle Scholar
  29. 29.
    L.E. Cross, Relaxor ferroelectrics. Ferroelectrics 76, 241–267 (1987)CrossRefGoogle Scholar
  30. 30.
    V.V. Shvartsman, D.C. Lupascu, Lead-free relaxor ferroelectrics. J. Am. Ceram. Soc. 95, 1–26 (2012)CrossRefGoogle Scholar
  31. 31.
    X. Lv, J.G. Wu, C.L. Zhao, D.Q. Xiao, J.G. Zhu, Z.H. Zhang, C.H. Zhang, X.X. Zhang, Enhancing temperature stability in potassium-sodium niobate ceramics through phase boundary and composition design. J. Eur. Ceram. Soc. 39, 305–315 (2019)CrossRefGoogle Scholar
  32. 32.
    Q.X. Hong, Z.X. Xu, Y.Y. Zhang, T.W. Chen, F.Y. Fan, L. Guo, M. Xu, J.M. Yan, L.H. Luo, R.K. Zheng, Improved upconversion photoluminescence properties of 0.965K0.4Na0.58Li0.02Nb0.96Sb0.04O3–0.035Bi0.5K0.5ZrO3:0.25%Er/xIn lead-free piezoelectric ceramics with balanced piezoelectric coefficient and Curie temperature. J. Mater. Sci. 29, 20923–20930 (2018)Google Scholar
  33. 33.
    D. Damjanovic, Contributions to the piezoelectric effect in ferroelectric single crystals and ceramics. J. Am. Ceram. Soc. 88, 2663–2676 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials and EnergySouthwest UniversityChongqingPeople’s Republic of China

Personalised recommendations