Advertisement

Sintering behavior, microwave dielectric properties and thermally stimulated depolarization current behavior of B2O3-doped CoTiNb2O8 ceramics

  • Shiyuan Wang
  • Yun Zhang
  • Yingchun ZhangEmail author
Article
  • 12 Downloads

Abstract

Low-fired B2O3-doped CoTiNb2O8 (CTN) microwave dielectric ceramics were synthesized via the conventional solid-state reaction method. The effects of B2O3 on the sintering behavior, phase composition, crystal defects and microwave dielectric properties of CTN ceramics were studied systematically. The B2O3 additive could effectively lower the sintering temperature from 1250 to 1000 °C. Single tetragonal rutile phase was found for all samples tested. Room-temperature microwave dielectric properties at high frequency and temperature-dependent dielectric properties at low frequency were both studied. It was found that B2O3 could induce obvious dielectric relaxation which was largely linked to the oxygen vacancy (\(V_{\text{O}}^{\bullet \bullet}\)). Also, newly formed defect dipole (\(2Ti_{\text{Ti}}^{\prime } - V_{\text{O}}^{ \bullet \bullet}\)) was detected by thermally stimulated depolarization current measurement. These two kinds of defects were both responsible for the dielectric loss of CTN ceramics. When the amount of B2O3 addition was 3 wt%, CTN ceramics sintered at 1000 °C possessed the optimum microwave dielectric properties with a εr of 63.4, a high Q × f of 18,793 GHz, and a τf of 80.48 ppm/°C, and was a promising candidate for low-temperature cofired ceramic (LTCC) applications.

Notes

Acknowledgements

This work has been financially supported by the National Natural Science Foundation of China (No. 51772022) and Fundamental Research Funds for the Central Universities (FRF-GF-18-005A).

References

  1. 1.
    S.D. Ramarao, V.R.K. Murthy, Dalton Trans. 44, 2311–2324 (2015)CrossRefGoogle Scholar
  2. 2.
    Y.G. Zhao, P. Zhang, Dalton Trans. 45, 11807–11816 (2016)CrossRefGoogle Scholar
  3. 3.
    J. Varghese, T. Joseph, K.P. Surendran, T.P.D. Rajan, M.T. Sebastian, Dalton Trans. 44, 5146–5152 (2015)CrossRefGoogle Scholar
  4. 4.
    A. Baumgarte, R. Blachnik, J. Alloys Compd. 215, 117–120 (1994)CrossRefGoogle Scholar
  5. 5.
    C.F. Tseng, J. Eur. Ceram. Soc. 34, 3641–3648 (2014)CrossRefGoogle Scholar
  6. 6.
    Y. Zhang, Y.C. Zhang, M.Q. Xiang, Ceram. Int. 42, 3542–3547 (2016)CrossRefGoogle Scholar
  7. 7.
    R.C. Pullar, J.D. Breeze, N.M. Alford, Key Eng. Mater. 224–226, 1–4 (2002)CrossRefGoogle Scholar
  8. 8.
    J.S. Kim, M.E. Song, M.R. Joung, J. Eur. Ceram. Soc. 30, 375–379 (2010)CrossRefGoogle Scholar
  9. 9.
    Y. Lv, R.Z. Zuo, Ceram. Int. 39, 2545–2550 (2013)CrossRefGoogle Scholar
  10. 10.
    T. Kolodiazhnyi, J. Eur. Ceram. Soc. 34, 1741–1753 (2014)CrossRefGoogle Scholar
  11. 11.
    W. Liu, C.A. Randall, J. Am. Ceram. Soc. 91, 3245–3250 (2008)CrossRefGoogle Scholar
  12. 12.
    W. Liu, C.A. Randall, J. Am. Ceram. Soc. 91, 3251–3257 (2008)CrossRefGoogle Scholar
  13. 13.
    H. Lee, J.R. Kim, M.J. Lanagan, S. Trolier-McKinstry, C.A. Randall, J. Am. Ceram. Soc. 96, 1209–1213 (2013)CrossRefGoogle Scholar
  14. 14.
    B.H. Toby, J. Appl. Crystallogr. 34, 210–213 (2001)CrossRefGoogle Scholar
  15. 15.
    N. Kumada, N. Koike, K. Nakanome, S. Yanagida, T. Takei, A. Miura, E. Magome, C. Moriyoshi, Y. Kuroiwa, J. Asian Ceram. Soc. 5, 284–289 (2017)CrossRefGoogle Scholar
  16. 16.
    B.W. Hakki, P.D. Coleman, IEEE Trans. Microw. Theory Tech. 8, 402–410 (1960)CrossRefGoogle Scholar
  17. 17.
    W.E. Courtney, IEEE Trans. Microw. Theory Tech. 18, 476–485 (1970)CrossRefGoogle Scholar
  18. 18.
    Y. Kobayashiy, M. Katoh, IEEE Trans. Microw. Theory Tech. 33, 586–592 (1985)CrossRefGoogle Scholar
  19. 19.
    H.T. Wu, Q.J. Mei, J. Alloys Compd. 651, 393–398 (2015)CrossRefGoogle Scholar
  20. 20.
    L.C. Chang, B.S. Chiou, J. Electroceram. 13, 829–837 (2004)CrossRefGoogle Scholar
  21. 21.
    Y. Zhang, Y.C. Zhang, B.J. Fu, Ceram. Int. 41, 10243–10249 (2015)CrossRefGoogle Scholar
  22. 22.
    M. Ranjbar, M.A. Taher, A. Sam, J. Mater. Sci. 26, 8029–8034 (2015)Google Scholar
  23. 23.
    R.D. Shannon, J. Appl. Phys. 73, 348–366 (1993)CrossRefGoogle Scholar
  24. 24.
    R.D. Shannon, R.A. Oswald, J.B. Parise, B.H.T. Chai, P. Byszewski, A. Pajaczowska, R. Sobolewski, J. Solid State Chem. 98, 90–98 (1992)CrossRefGoogle Scholar
  25. 25.
    N. Ichinose, T. Shimada, J. Eur. Ceram. Soc. 26, 1755–1759 (2006)CrossRefGoogle Scholar
  26. 26.
    Y. Zhang, Y.C. Zhang, J. Alloys Compd. 683, 86–91 (2016)CrossRefGoogle Scholar
  27. 27.
    J.W. Choi, J.Y. Ha, C.Y. Kang, S.J. Yoon, H.J. Kim, K.H. Yoon, Jpn. J. Appl. Phys. 39, 5923–5926 (2000)CrossRefGoogle Scholar
  28. 28.
    D. Suvorov, M. Valant, S. Skapin, D. Kolar, J. Mater. Sci. 33, 85–89 (1998)CrossRefGoogle Scholar
  29. 29.
    B. Shen, X. Yao, L. Kang, D. Peng, Ceram. Int. 30, 1203–1206 (2004)CrossRefGoogle Scholar
  30. 30.
    D. Houivet, J.E. Fallah, J. Bernad, F. Roulland, J.M. Haussonne, J. Eur. Ceram. Soc. 21, 1715–1718 (2001)CrossRefGoogle Scholar
  31. 31.
    H. Takahashi, K. Ayusawa, N. Sakamoto, Jpn. J. Appl. Phys. 36, 5597–5599 (1997)CrossRefGoogle Scholar
  32. 32.
    M.M. Hoque, A. Dutta, S. Kumar, T.P. Sinha, Phys. B 407, 3740–3748 (2012)CrossRefGoogle Scholar
  33. 33.
    I.P. Raevski, S.A. Prosandeev, A.S. Bogatin, J. Appl. Phys. 93, 4130–4136 (2003)CrossRefGoogle Scholar
  34. 34.
    C.M. Lei, C.C. Wang, T. Li, G.J. Wang, X.H. Sun, L.N. Liu, J. Wang, J. Mater. Sci. 8, 7294–7299 (2013)CrossRefGoogle Scholar
  35. 35.
    S.H. Yoon, C.A. Randall, K.H. Hur, J. Am. Ceram. Soc. 93, 1950–1956 (2010)Google Scholar
  36. 36.
    J. Zhang, Y.Y. Zhou, B. Peng, Z.K. Xie, X.H. Zhang, Z.X. Yue, J. Am. Ceram. Soc. 97, 3537–3543 (2014)CrossRefGoogle Scholar
  37. 37.
    S.H. Yoon, J.S. Park, S.H. Kim, D.Y. Kim, Appl. Phys. Lett. 103, 042901–042905 (2013)CrossRefGoogle Scholar
  38. 38.
    J. Zhang, Z.X. Yue, Y.Y. Zhou, X.H. Zhang, L.T. Li, J. Am. Ceram. Soc. 98, 1548–1554 (2015)CrossRefGoogle Scholar
  39. 39.
    P. Bräunlich (ed.), Thermally Stimulated Relaxation in Solids (Springer, New York, 1979)Google Scholar
  40. 40.
    F.A. Grant, Rev. Mod. Phys. 31, 646–674 (1959)CrossRefGoogle Scholar
  41. 41.
    R.P. Liferovich, R.H. Mitchell, Acta Cryst. B 60, 496–501 (2004)CrossRefGoogle Scholar
  42. 42.
    C.C. Wang, N. Zhang, Q.J. Li, Y. Yu, J. Zhang, Y.D. Li, H. Wang, J. Am. Ceram. Soc. 98, 148–153 (2015)CrossRefGoogle Scholar
  43. 43.
    X.H. Sun, C.C. Wang, G.J. Wang, C.M. Lei, T. Li, L.N. Liu, J. Am. Ceram. Soc. 96, 1497–1503 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijingPeople’s Republic of China

Personalised recommendations