Ultrathin bismuth oxyhalides solid solution nanosheets with oxygen vacancies for enhanced selective photocatalytic NO removal process

  • Xian Shi
  • Pingquan WangEmail author
  • Kai Zhang
  • Xing Li


Photocatalytic NO removal is an oxidation reaction where the NO2 or NO3 can be generated during the selective or non-selective NO removal process. For enhanced photocatalytic NO removal ability, photocatalysts were required stronger molecular oxygen activation activity for stronger oxidizability. Solid solution structure is confirmed as an efficient strategy to achieve induced molecular oxygen activation capacity. In this work, ultrathin structural BiOBr0.5I0.5 with oxygen vacancies (BiOBr0.5I0.5-U) was prepared and it showed obvious enhanced photocatalytic efficiency for NO removal than unmodified BiOBr0.5I0.5. The photocatalytic NO removal mechanism was confirmed through efficient methods. The enhanced generation ability for superoxide and singlet oxygen due to the ultrathin structure of BiOBr0.5I0.5-U was confirmed evidentially. The improved molecular oxygen activation activity supported the improved selective NO removal efficiency. This study could provide a new thought for the design of efficient bismuth oxyhalide photocatalysts for NO removal.



This work was supported by National Natural Science Foundation of China (Nos. 51872147, 51502146, 51702270).

Supplementary material

10854_2019_2134_MOESM1_ESM.docx (1.6 mb)
Supplementary material 1 (DOCX 1611 kb) Supporting Information Other important experimental results, such as XPS survey, BET and so on, were shown in supporting information in detail


  1. 1.
    S. Lee, G. Nam, J. Sun, J.S. Lee, H.W. Lee, W. Chen, J. Cho, Y. Cui, Enhanced intrinsic catalytic activity of λ-MnO\r2\r by electrochemical tuning and oxygen vacancy generation. Angew. Chem. 128, 8741–8746 (2016)CrossRefGoogle Scholar
  2. 2.
    Y. Bai, T. Chen, P. Wang, L. Wang, L. Ye, Bismuth-rich Bi4O5X2 (X = Br, and I) nanosheets with dominant 101 facets exposure for photocatalytic H2 evolution. Chem. Eng. J. 304, 454–460 (2016)CrossRefGoogle Scholar
  3. 3.
    C. Santaella, B. Allainmat, F. Simonet, J. Labille, M. Auffan, J. Rose, W. Achouak, Aged TiO2-based nanocomposite used in sunscreens produces singlet oxygen under long-wave UV and sensitizes Escherichia coli to cadmium. Environ. Sci. Technol. 48, 5245–5253 (2014)CrossRefGoogle Scholar
  4. 4.
    J. Chen, X.J. Wu, L. Yin, B. Li, X. Hong, Z. Fan, B. Chen, C. Xue, H. Zhang, One-pot synthesis of CdS nanocrystals hybridized with single-layer transition-metal dichalcogenide nanosheets for efficient photocatalytic hydrogen evolution. Angew. Chem. 54, 1210–1214 (2015)CrossRefGoogle Scholar
  5. 5.
    L. Ye, X. Jin, C. Liu, C. Ding, H. Xie, K.H. Chu, P.K. Wong, Thickness-ultrathin and bismuth-rich strategies for BiOBr to enhance photoreduction of CO2 into solar fuels. Appl. Catal. B 187, 281–290 (2016)CrossRefGoogle Scholar
  6. 6.
    Z. Wei, Y. Liu, J. Wang, R. Zong, W. Yao, J. Wang, Y. Zhu, Controlled synthesis of a highly dispersed BiPO4 photocatalyst with surface oxygen vacancies. Nanoscale 7, 13943–13950 (2015)CrossRefGoogle Scholar
  7. 7.
    Z. Mei, S. Ouyang, Y. Zhang, T. Kako, Ultrafine Zn1−xCuxS (0 ≤ x ≤ 0.066) nanocrystallites for photocatalytic H2 evolution under visible light irradiation. RSC Adv. 3, 10654–10657 (2013)CrossRefGoogle Scholar
  8. 8.
    X. Sun, K. Maeda, M.L. Faucheur, K. Teramura, K. Domen, Preparation of (Ga1−xZnx) (N1−xOx) solid-solution from ZnGa2O4 and ZnO as a photo-catalyst for overall water splitting under visible light. Appl. Catal. A 327, 114–121 (2007)CrossRefGoogle Scholar
  9. 9.
    X. Zhang, L.W. Wang, C.Y. Wang, W.K. Wang, Y.L. Chen, Y.X. Huang, W.W. Li, Y.J. Feng, H.Q. Yu, Synthesis of BiOClxBr1–x nanoplate solid solutions as a robust photocatalyst with tunable band structure. Chemistry 21, 11872–11877 (2015)CrossRefGoogle Scholar
  10. 10.
    W.J. Kim, D. Pradhan, B.K. Min, Y. Sohn, Adsorption/photocatalytic activity and fundamental natures of BiOCl and BiOClxI1−x prepared in water and ethylene glycol environments, and Ag and Au-doping effects. Appl. Catal. B 147, 711–725 (2014)CrossRefGoogle Scholar
  11. 11.
    P. Yang, H.S. Chen, S. Zhang, J. Zhao, Y. Du, Y. Miao, H. He, Y. Liu, Effect of Cd0.5Zn0.5S shells on temperature-dependent luminescence kinetics of CdSe quantum dots. RSC Adv. 4, 43800–43805 (2014)CrossRefGoogle Scholar
  12. 12.
    A. Dandapat, H. Gnayem, Y. Sasson, The fabrication of BiOClxBr1–x/Alumina composite films with highly exposed 001 facets and their superior photocatalytic activities. Chem. Commun. 52, 2161–2164 (2015)CrossRefGoogle Scholar
  13. 13.
    A. Migani, G.N. Vayssilov, S.T. Bromley, F. Illas, K.M. Neyman, Greatly facilitated oxygen vacancy formation in ceria nanocrystallites. Chem. Commun. 46, 5936–5938 (2010)CrossRefGoogle Scholar
  14. 14.
    J.Y. Liu, Y. Bai, P.Y. Luo, P.Q. Wang, One-pot synthesis of graphene-BiOBr nanosheets composite for enhanced photocatalytic generation of reactive oxygen species. Catal. Commun. 42, 58–61 (2013)CrossRefGoogle Scholar
  15. 15.
    Y. Tang, Z. Han, Z. Ke, D. Jian, T. Fan, Z. Di, Visible-light-active ZnO via oxygen vacancy manipulation for efficient formaldehyde photodegradation. Chem. Eng. J. 262, 260–267 (2015)CrossRefGoogle Scholar
  16. 16.
    T. Xiong, H. Wang, Y. Zhou, Y. Sun, W. Cen, H. Huang, Y. Zhang, F. Dong, KCl-mediated dual electronic channels in layered g-C3N4 for enhanced visible light photocatalytic NO removal. Nanoscale 10, 8066–8074 (2018)CrossRefGoogle Scholar
  17. 17.
    B. Lin, S. Chen, F. Dong, G. Yang, A ball-in-ball g-C3N4@SiO2 nano-photoreactor for highly efficient H2 generation and NO removal. Nanoscale 9, 5273–5279 (2017)CrossRefGoogle Scholar
  18. 18.
    Q. Zhao, X. Liu, Y. Xing, Z. Liu, C. Du, Synthesizing Bi2O3/BiOCl heterojunctions by partial conversion of BiOCl. J. Mater. Sci. 52, 2117–2130 (2017)CrossRefGoogle Scholar
  19. 19.
    Y. Yang, Z. Feng, Z. Su, Y. Liu, Q. He, Facile preparation of BiOClxI1−x composites with enhanced visible-light photocatalytic activity. Appl. Phys. A 123, 29–39 (2017)CrossRefGoogle Scholar
  20. 20.
    M. Chang, H. Wang, H. Li, J. Liu, H. Du, Facile preparation of novel Fe2O3/BiOI hybrid nanostructures for efficient visible light photocatalysis. J. Mater. Sci. 53, 3682–3691 (2017)CrossRefGoogle Scholar
  21. 21.
    X. Xiao, W.D. Zhang, Hierarchical Bi7O9I3 micro/nano-architecture: facile synthesis, growth mechanism, and high visible light photocatalytic performance. RSC Adv. 1, 1099–1105 (2011)CrossRefGoogle Scholar
  22. 22.
    J. Li, L. Zhang, Y. Li, Y. Yu, Synthesis and internal electric field dependent photoreactivity of Bi3O4Cl single-crystalline nanosheets with high 001 facet exposure percentages. Nanoscale 6, 167–171 (2013)CrossRefGoogle Scholar
  23. 23.
    J. Zhao, C. Zhang, M. Li, S. Li, L. Wei, S. Zhang, Two-stage chemical absorption-biological reduction system for NO removal: model development and footprint estimation. Energy Fuel. 31, 8454–8461 (2017)CrossRefGoogle Scholar
  24. 24.
    M. Ou, D. Fan, Z. Wei, Z. Wu, Efficient visible light photocatalytic oxidation of NO in air with band-gap tailored (BiO)2CO3–BiOI solid solutions. Chem. Eng. J. 255, 650–658 (2014)CrossRefGoogle Scholar
  25. 25.
    Z. Ai, L. Zhu, S. Lee, L. Zhang, NO treated TiO2 as an efficient visible light photocatalyst for NO removal. J. Hazard. Mater. 192, 361–367 (2011)CrossRefGoogle Scholar
  26. 26.
    G. Dong, W. Ho, Y. Li, L. Zhang, Facile synthesis of porous graphene-like carbon nitride (C6N9H3) with excellent photocatalytic activity for NO removal. Appl. Catal. B 174–175, 477–485 (2015)CrossRefGoogle Scholar
  27. 27.
    G. Dong, W. Ho, L. Zhang, Photocatalytic NO removal on BiOI surface: the change from nonselective oxidation to selective oxidation. Appl. Catal. B 168–169, 490–496 (2015)CrossRefGoogle Scholar
  28. 28.
    L. Hong, S. Yun, C. Zhen, Z. Jin, W. Yong, Graphene sheets grafted three-dimensional BiOBr0.2I0.8 microspheres with excellent photocatalytic activity under visible light. J. Hazard. Mater. 266, 75–83 (2014)CrossRefGoogle Scholar
  29. 29.
    Y. Lei, G. Wang, P. Guo, H. Song, The Ag-BiOBrxI1−x composite photocatalyst: preparation, characterization and their novel pollutants removal property. Appl. Surf. Sci. 279, 374–379 (2013)CrossRefGoogle Scholar
  30. 30.
    L. Ye, W. Hui, X. Jin, Y. Su, D. Wang, H. Xie, X. Liu, X. Liu, Synthesis of olive-green few-layered BiOI for efficient photoreduction of CO2 into solar fuels under visible/near-infrared light. Sol. Energ. Mat. Sol. C. 144, 732–739 (2016)CrossRefGoogle Scholar
  31. 31.
    W. Qiao, Z. Liu, D. Liu, G. Liu, Y. Min, F. Cui, W. Wei, Ultrathin two-dimensional BiOBrxI1−x solid solution with rich oxygen vacancies for enhanced visible-light-driven photoactivity in environmental remediation. Appl. Catal. B 236, 222–232 (2018)CrossRefGoogle Scholar
  32. 32.
    S. Meng, W. Wang, Z. Ling, Preparation of BiOBr lamellar structure with high photocatalytic activity by CTAB as Br source and template. J. Hazard. Mater. 167, 803–809 (2009)CrossRefGoogle Scholar
  33. 33.
    R. Dong, Y. Hu, Y. Wu, W. Gao, B. Ren, Q. Wang, Y. Cai, Visible-light-driven BiOI-based janus micromotor in pure water. J. Am. Chem. Soc. 139, 1722–1725 (2017)CrossRefGoogle Scholar
  34. 34.
    A. Moya, A. Cherevan, S. Marchesan, P. Gebhardt, M. Prato, D. Eder, J.J. Vilatela, Oxygen vacancies and interfaces enhancing photocatalytic hydrogen production in mesoporous CNT/TiO2 hybrids. Appl. Catal. B 179, 574–582 (2015)CrossRefGoogle Scholar
  35. 35.
    V. Morales-Flórez, A. Santos, I. Romero-Hermida, L. Esquivias, Hydration and carbonation reactions of calcium oxide by weathering: kinetics and changes in the nanostructure. Chem. Eng. J. 265, 194–200 (2015)CrossRefGoogle Scholar
  36. 36.
    H. Li, F. Qin, Z. Yang, X. Cui, J. Wang, L. Zhang, A new reaction pathway induced by plasmon for selective benzyl alcohol oxidation on BiOCl possessing oxygen vacancies. J. Am. Chem. Soc. 139, 3513–3521 (2017)CrossRefGoogle Scholar
  37. 37.
    B. Henkel, T. Neubert, S. Zabel, C. Lamprecht, C. Selhuber-Unkel, K. Rätzke, T. Strunskus, M. Vergöhl, F. Faupel, Photocatalytic properties of titania thin films prepared by sputtering versus evaporation and aging of induced oxygen vacancy defects. Appl. Catal. B 180, 362–371 (2016)CrossRefGoogle Scholar
  38. 38.
    H. Chen, M. Yang, S. Tao, G. Chen, Oxygen vacancy enhanced catalytic activity of reduced Co3O4 towards p -nitrophenol reduction. Appl. Catal. B 209, 648–656 (2017)CrossRefGoogle Scholar
  39. 39.
    J. Li, M. Zhang, Z. Guan, Q. Li, C. He, J. Yang, Synergistic effect of surface and bulk single-electron-trapped oxygen vacancy of TiO2 in the photocatalytic reduction of CO2. Appl. Catal. B 206, 300–307 (2017)CrossRefGoogle Scholar
  40. 40.
    A. Sobhaninasab, M. Maddahfar, S.M. Hosseinpourmashkani, Ce(MoO4)2 nanostructures: synthesis, characterization, and its photocatalyst application through the ultrasonic method. J. Mol. Liq. 216, 1–5 (2016)CrossRefGoogle Scholar
  41. 41.
    S.M. Hosseinpour-mashkani, A. Sobhani-Nasab, Simple synthesis and characterization of copper tungstate nanoparticles: investigation of surfactant effect and its photocatalyst application. J. Mater. Sci-Mater. El. 27, 7548–7553 (2016)CrossRefGoogle Scholar
  42. 42.
    S.M. Hosseinpour-Mashkani, A. Sobhani-Nasab, A simple sonochemical synthesis and characterization of CdWO4 nanoparticles and its photocatalytic application. J. Mater. Sci-Mater. El. 27, 3240–3244 (2016)CrossRefGoogle Scholar
  43. 43.
    S.M. Hosseinpour-Mashkani, M. Maddahfar, A. Sobhani-Nasab, Novel silver-doped CdMoO4: synthesis, characterization, and its photocatalytic performance for methyl orange degradation through the sonochemical method. J. Mater. Sci-Mater. El. 27, 474–480 (2015)CrossRefGoogle Scholar
  44. 44.
    S.M. Hosseinpour-Mashkani, M. Maddahfar, A. Sobhani-Nasab, Precipitation synthesis, characterization, morphological control, and photocatalyst application of ZnWO4 nanoparticles. J. Electron. Mater. 45, 3612–3620 (2016)CrossRefGoogle Scholar
  45. 45.
    L. Liu, F. Gao, H. Zhao, Y. Li, Tailoring Cu valence and oxygen vacancy in Cu/TiO2 catalysts for enhanced CO2 photoreduction efficiency. Appl. Catal. B 134, 349–358 (2013)CrossRefGoogle Scholar
  46. 46.
    J. Hu, D. Chen, N. Li, Q. Xu, L. Hua, J. He, J. Lu, Fabrication of graphitic-C3N4 quantum dots/graphene-InVO4 aerogel hybrids with enhanced photocatalytic NO removal under visible-light irradiation. Appl. Catal. B 236, 45–52 (2018)CrossRefGoogle Scholar
  47. 47.
    Z. Xiao, B. Shen, S. Feng, X. Zhang, S. Meng, Y. Peng, The behavior of the manganese-cerium loaded metal-organic framework in elemental mercury and NO removal from flue gas. Chem. Eng. J. 326, 551–560 (2017)CrossRefGoogle Scholar
  48. 48.
    Y. Nosaka, A.Y. Nosaka, Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 117, 11302–11336 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Oil and Gas Reservoir Geology and ExploitationSouthwest Petroleum UniversityChengduChina

Personalised recommendations