Mössbauer studies of mixed-valence manganite Pb3(Mn0.965Fe0.035)7O15

  • V. A. AndrianovEmail author
  • A. A. Bush
  • V. P. Gorkov
  • Yu. D. Perfiliev


Pb3Mn7O15 manganite with mixed valence (Mn3+/Mn4+) was studied by Mössbauer effect on 57Fe impurity atoms in the temperature range of 80–673 K. The experimental spectra consisted of two main quadrupole doublets corresponding to trivalent Fe atoms replacing Mn atoms in different positions in the crystal lattice. Identification of the doublets was made on the basis of calculations of quadrupole splitting within the point charges model and taking possible polarization of oxygen ions into account. In two temperature ranges: T ≈ 370–510 K, corresponding to the structural phase transition, and at T ≈ 140–230 K, where strong anomalies of the magnetic and electrical properties were observed, the sharp changes in the hyperfine quadrupole splitting were observed. It is assumed that these changes are caused by changes in the valence of manganese ions and structural deformations.



Authors thank Dr. A.L. Erzinkyan and Dr. V.I. Nesterov for the help with LT Mössbauer measurements and Dr. S.A. Ivanov for X-ray diffraction.


This work was supported by scientific program of Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University and by Ministry of Education and Science of Russian Federation, Project Number 3.1099.2017/PCh.


  1. 1.
    S.V. Streltsov, D.I. Khomskii, Orbital physics in transition metal compounds: new trends. Phys. Usp. 60, 1121–1146 (2017)CrossRefGoogle Scholar
  2. 2.
    S.A.J. Kimber, Charge and orbital order in frustrated Pb3Mn7O15. J. Phys. 24(18), 186002 (2012)Google Scholar
  3. 3.
    N.V. Volkov, L.A. Solovyov, E.V. Eremin, K.A. Sablina, S.V. Misjul, M.S. Molokeev, A.I. Zaitsev, M.V. Gorev, A.F. Bovina, N.V. Mihashenok, Temperature-dependent features of Pb3Mn7O15 crystal structure. Phys. B 407, 689–693 (2012)CrossRefGoogle Scholar
  4. 4.
    S.A. Ivanov, A.A. Bush, M. Hudl, A.I. Stash, G. Andre, R. Tellgren, V.M. Cherepanov, A.V. Stepanov, K.E. Kamentsev, Y. Tokunaga, Y. Taguchi, Y. Tokura, P. Nordblad, R. Mathieu, Spin and dipole order in geometrically frustrated mixed-valence manganite Pb3Mn7O15. J. Mater. Sci. 27(12), 12562–12573 (2016)Google Scholar
  5. 5.
    N.V. Volkov, E.V. Eremin, K.A. Sablina, N.V. Sapronova, Dielectric properties of a mixed-valence Pb3Mn7O15 manganese oxide. J. Phys. 22, 375901 (2010)Google Scholar
  6. 6.
    N.V. Volkov, K.A. Sablina, E.V. Eremin, P. Boni, V.R. Shah, I.N. Flerov, A. Kartashev, J.C.E. Rasch, M. Boehm, J Schefer (2008) Heat capacity of a mixed-va-lence manganese oxide Pb3Mn7O15. J. Phys. 20, 445214 (2008)Google Scholar
  7. 7.
    N.V. Volkov, E.V. Eremin, O.A. Bayukov, K.A. Sablina, L.A. Solov’ev, D.A. Velikanov, N.V. Mikhashenok, E.I. Osetrov, J. Schefer, L. Keller, M. Boehm, L.A. Solov’ev, Suppression of the long-range magnetic order in Pb3(Mn1−xFex)7O15 upon substitution of Fe for Mn. J. Magn. Magn. Mater. 342, 100–107 (2013)CrossRefGoogle Scholar
  8. 8.
    V.S. Shpinel, Resonance of Gamma-Rays in Crystals (Nayka, Moscow, 1969), p. 407. (in Russian) Google Scholar
  9. 9.
    P. Gutlich, E. Bill, A.X. Trautwein, Mossbauer Spectroscopy and Transition Metal Chemistry. Fundamentals and Applications (Springer, Berlin, 2011)CrossRefGoogle Scholar
  10. 10.
    I.D. Brown, D. Altermatt, Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database. Acta Crystallogr. 41, 244 (1985)CrossRefGoogle Scholar
  11. 11.
    A.A. Bush, A.V. Titov, B.I. Al’shin, YuN Venevtsev, Phase diagram of the PbO-Mn2O3 system and the preparation of Pb3Mn6O13 single crystals. Russ. J. Inorg. Chem. 22, 1211 (1977)Google Scholar
  12. 12.
    F.R. Menvil, Systematic trends of the 57Fe Mossbauer isomer shift in (FeO) and (FeF) polyhedral. J. Phys. Chem. Solids 46(7), 763–789 (1985)CrossRefGoogle Scholar
  13. 13.
    D.P.E. Dickson, F.J. Berry, Mössbauer Spectroscopy (Cambridge University Press, Cambridge, 1986), pp. 1–286CrossRefGoogle Scholar
  14. 14.
    R.M. Sternheimer, Quadrupole antishielding factors of ions. Phys. Rev. 130, 1423 (1963)CrossRefGoogle Scholar
  15. 15.
    P. Raj, V. Amirthalingam, Calculation of electric-field-gradient tensor for a single crystal of paramagnetic CuCl2 2H2O. Phys. Rev. 146(2), 590–592 (1966)CrossRefGoogle Scholar
  16. 16.
    Z.M. Stadnik, Electric field gradient calculations in rare-earth iron garnets. J. Phys. Chem. Solids 45(3), 311–318 (1984)CrossRefGoogle Scholar
  17. 17.
    A. Belik, Y.S. Glazkova, Y. Katsuya, M. Tanaka, A.V. Sobolev, I.A. Presniakov, Low-temperature structural modulations in CdMn7O12, CaMn7O12, SrMn7O12, and PbMn7O12 perovskites studied by synchrotron X-ray, powder diffraction and Mössbauer spectroscopy. J. Phys. Chem. C 120, 8278–8288 (2016)CrossRefGoogle Scholar
  18. 18.
    H.C. Verma, G.N. Rao, Systematic study of the temperature dependence of the electric field gradients at probe nuclei in non-cubic metals. Hyperfine Interact. 15(1), 207–210 (1982)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Scobeltsyn Institute of Nuclear PhysicsLomonosov Moscow State UniversityMoscowRussia
  2. 2.MIREA - Moscow Technological UniversityMoscowRussia
  3. 3.Faculty of Computational Mathematics and CyberneticsLomonosov Moscow State UniversityMoscowRussia
  4. 4.Department of ChemistryLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations