Advertisement

PVP-assisted synthesis of rod-like ZnO photocatalyst for photodegradation of reactive red (RR141) and Congo red (CR) azo dyes

  • Tammanoon Chankhanittha
  • Jidapa Watcharakitti
  • Suwat NananEmail author
Article
  • 49 Downloads

Abstract

A ZnO photocatalyst has been synthesized via a hydrothermal method using polyvinylpyrrolidone (PVP) as a capping agent. The ZnO catalyst shows hexagonal wurtzite structure with a rod-like microstructure (0.58 μm × 2.47 μm, from TEM) due to the assembly of many crystallites. An excitonic peak found in photoluminescence (PL) spectrum at 367 nm indicates a significant improvement of sample crystallinity after calcination. The catalyst showed a remarkable photocatalytic efficiency of 100% toward degradation of two azo dyes. High crystallinity together with low electron–hole recombination rate found in the catalyst promoted its enhanced photodegradation efficiency. The degradation reaction showed first-order kinetics with a rate constant of 0.0186 min−1. Both electron and superoxide anion radical play the most important role involved in photodegradation of the dye. The second majority comes from hydroxyl radical (OH·) which also made a huge contribution toward photodegradation of the dye. The ZnO catalyst remained stable after three cycles of use. The catalyst showed approximately the same efficiency even after the third run. This work demonstrates the promising potential of ZnO photocatalyst for environmental remediation.

Notes

Acknowledgements

Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Khon Kaen University is gratefully acknowledged. T. Chankhanittha acknowledges the fund from SAST. J. Watcharakitti would like to thank DPST scholarship from the Royal Thai Government. S. Nanan also wishes to thank partial fund from Research and Academic Affairs Promotion Fund (RAAPF), Faculty of Science, Khon Kaen University, Fiscal year 2019. This study was partially supported by Research and Technology Transfer Affairs of Khon Kaen University (promotion of using Synchrotron radiation in basic research, Fiscal year 2018). The authors would like to thank the Synchrotron Light Research Institute, SIRI (Public Organization), Nakhon Ratchasima, Thailand for generous beamtime (BL5.3, XPS experiment).

Supplementary material

10854_2019_2132_MOESM1_ESM.docx (3.3 mb)
Supplementary material 1 (DOCX 3352 kb)

References

  1. 1.
    C.B. Ong, L.Y. Ng, A.W. Mohammad, A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications. Renew. Sustain. Energy Rev. 81, 536–551 (2018)CrossRefGoogle Scholar
  2. 2.
    P. Prasannalakshmi, N. Shanmugam, Fabrication of TiO2/ZnO nanocomposites for solar energy driven photocatalysis. Mater. Sci. Semicond. Process. 61, 114–124 (2017)CrossRefGoogle Scholar
  3. 3.
    R. Atchudan, T. Edison, S. Perumal, M. Shanmugam, Y.R. Lee, Direct solvothermal synthesis of zinc oxide nanoparticle decorated graphene oxide nanocomposite for efficient photodegradation of azo-dyes. J. Photochem. Photobiol. A. 337, 100–111 (2017)CrossRefGoogle Scholar
  4. 4.
    E. Alp, E.C. Araz, A.F. Buluç, Y. Günerb, Y. Değer, H. Eşgin, K.B. Dermenci, M.K. Kazmanlı, S. Turan, A. Genc, Mesoporous nanocrystalline ZnO microspheres by ethylene glycol mediated thermal decomposition. Adv. Powder Technol. 29, 3455–3461 (2018)CrossRefGoogle Scholar
  5. 5.
    R. Mahdavi, S. Siamak Ashraf Talesh, Sol–gel synthesis, structural and enhanced photocatalytic performance of Al doped ZnO nanoparticles. Adv. Powder Technol. 28, 1418–1425 (2017)CrossRefGoogle Scholar
  6. 6.
    A. Phuruangrat, S. Thongtem, T. Thongtem, Ultrasonic-assisted synthesis and photocatalytic performance of ZnO nanoplates and microflowers. Mater. Des. 107, 250–256 (2016)CrossRefGoogle Scholar
  7. 7.
    M. Xu, S. Jia, C. Chen, Z. Zhang, J. Yan, Y. Guo, Y. Zhang, W. Zhao, J. Yun, Y. Wang, Microwave-assistant hydrothermal synthesis of SnO2@ZnO hierarchical nanostructures enhanced photocatalytic performance under visible light irradiation. Mater. Res. Bull. 106, 74–80 (2018)CrossRefGoogle Scholar
  8. 8.
    R. Pundimurugan, S. Thambidurai, New seaweed capped ZnO nanoparticles for effective dye photodegradation and antibacterial activity. Adv. Powder Technol. 27, 1062–1072 (2016)CrossRefGoogle Scholar
  9. 9.
    S.M. Saleh, ZnO nanospheres based simple hydrothermal route for photocatalytic degradation of azo dye. Spectrochim. Acta Part A 211, 141–147 (2019)CrossRefGoogle Scholar
  10. 10.
    N.M. Al-Hada, E. Saion, H.M. Kamari, M.H. Flaifel, A.H. Shaari, Z.A. Talib, N. Abdullahi, A.A. Baqer, A. Kharazmi, Structural, morphological and optical behaviour of PVP capped binary (ZnO)0.4 (CdO)0.6 nanoparticles synthesised by a facile thermal route. Mater. Sci. Semicond. Process. 53, 56–65 (2016)CrossRefGoogle Scholar
  11. 11.
    B. Paul, S. Vadivel, S.S. Dhar, S. Debbarma, M. Kumaravel, One-pot green synthesis of zinc oxide nano rice and its application as sonocatalyst for degradation of organic dye and synthesis of 2-benzimidazole derivatives. J. Phys. Chem. Solids 104, 152–159 (2017)CrossRefGoogle Scholar
  12. 12.
    C.B. Ong, A.W. Mohammad, R. Rohani, M.M. Ba-Abbad, N.H. Hairom, Solar photocatalytic degradation of hazardous Congo red using low-temperature synthesis of zinc oxide nanoparticles. Process Saf. Environ. Prot. 104, 549–557 (2016)CrossRefGoogle Scholar
  13. 13.
    T. Senasu, K. Hemavibool, S. Nanan, Hydrothermally grown CdS nanoparticles for photodegradation of anionic azo dyes under UV–Visible light irradiation. RSC Adv. 8, 22592–22605 (2018)CrossRefGoogle Scholar
  14. 14.
    S. Kakarndee, S. Nanan, SDS capped and PVA capped ZnO nanostructures with high photocatalytic performance toward photodegradation of reactive red (RR141) azo dye. J. Environ. Chem. Eng. 6, 74–94 (2018)CrossRefGoogle Scholar
  15. 15.
    T. Chankhanittha, S. Nanan, Hydrothermal synthesis, characterization and enhanced photocatalytic performance of ZnO toward degradation of organic azo dye. Mater Lett. 226, 79–82 (2018)CrossRefGoogle Scholar
  16. 16.
    X. Liu, J. Cao, L. Yang, M. Wei, X. Li, J. Lang, X. Li, Y. Liu, J. Yang, Y. Liu, Growth mechanism, optical and photocatalytic properties of ZnO nanorods@nanoflowers (quantum dots) hybrid nanostructures. Ceram. Int. 41, 12258–12266 (2015)CrossRefGoogle Scholar
  17. 17.
    S.K. Mandal, K. Dutta, S. Pal, S. Mandal, A. Naskar, P.K. Pal, T.S. Bhattachary, A. Singha, R. Saikh, S. De, D. Jana, Engineering of ZnO/rGO nanocomposite photocatalyst towards rapid degradation of toxic dyes. Mater. Chem. Phys. 223, 456–465 (2019)CrossRefGoogle Scholar
  18. 18.
    S. Kakarndee, S. Juabrum, S. Nanan, Low temperature synthesis, characterization and photoluminescence study of plate-like ZnS. Mater Lett. 164, 198–201 (2016)CrossRefGoogle Scholar
  19. 19.
    H. Li, H. Shen, L. Duan, R. Liu, Q. Li, Q. Zhang, X. Zhao, Enhanced photocatalytic activity and synthesis of ZnO nanorods/MoS2 composites. Superlattices Microstruct. 117, 336–341 (2018)CrossRefGoogle Scholar
  20. 20.
    C. Jaramillo-Páez, J.A. Navío, M.C. Hidalgo, Silver-modified ZnO highly UV-photoactive. J. Photochem. Photobiol. A 356, 112–121 (2018)CrossRefGoogle Scholar
  21. 21.
    T. Bora, P. Sathe, K. Laxman, S. Dobretsov, J. Dutta, Defect engineered visible light active ZnO nanorods for photocatalytic treatment of water. Catal. Today 284, 11–18 (2017)CrossRefGoogle Scholar
  22. 22.
    D. Maučec, A. Šuligoj, A. Ristić, G. Dražić, A. Pintar, N.N. Tušar, Titania versus zinc oxide nanoparticles on mesoporous silica supports as photocatalysts for removal of dyes from wastewater at neutral pH. Catal. Today 310, 32–41 (2018)CrossRefGoogle Scholar
  23. 23.
    J. Kaur, S. Bansal, S. Singhal, Photocatalytic degradation of methyl orange using ZnO nanopowders synthesized via thermal decomposition of oxalate precursor method. Phys. B 416, 33–38 (2013)CrossRefGoogle Scholar
  24. 24.
    F. Meng, Y. Liu, J. Wang, X. Tan, H. Sun, S. Liu, S. Wang, Temperature dependent photocatalysis of g-C3N4, TiO2 and ZnO: differences in photoactive mechanism. J. Colloid Interface Sci. 532, 321–330 (2018)CrossRefGoogle Scholar
  25. 25.
    K. Chen, Q. Fan, C. Chen, Z. Chen, A. Alsaedi, T. Hayat, Insights into the crystal size and morphology of photocatalysts. J. Colloid Interface Sci. 538, 638–647 (2019)CrossRefGoogle Scholar
  26. 26.
    R.E. Adam, G. Pozina, M. Willander, O. Nur, Synthesis of ZnO nanoparticles by co-precipitation method for solar driven photodegradation of Congo red dye at different pH. Photon. Nanostruct. Fundam. Appl. 32, 11–18 (2018)CrossRefGoogle Scholar
  27. 27.
    P.S. Kumar, M. Selvakumar, S.G. Babu, S. Induja, S. Karuthapandian, CuO/ZnO nanorods: an affordable efficient p–n heterojunction and morphology dependent photocatalytic activity against organic contaminants. J. Alloys Compd. 701, 562–573 (2017)CrossRefGoogle Scholar
  28. 28.
    M. Mahendiran, J.J. Mathen, M. Racik, J. Madhavan, M. Raj, Victor Antony Raj, Investigation of structural, optical and electrical properties of transition metal oxide semiconductor CdO–ZnO nanocomposite and its effective role in the removal of water contaminants. J. Phys. Chem. Solids. 126, 322–334 (2019)CrossRefGoogle Scholar
  29. 29.
    R. Koutavarapu, G. Lee, B. Babu, K. Yoo, J. Shim, Visible-light-driven photocatalytic activity of tiny ZnO nanosheets anchored on NaBiS2 nanoribbons via hydrothermal synthesis. J. Mater. Sci. Mater. Electron. 30, 10900–10911 (2019)CrossRefGoogle Scholar
  30. 30.
    M.M. Ba-Abbad, M.S. Takriff, A. Benamor, A.W. Mohammad, Synthesis and characterisation of Co2+-incorporated ZnO nanoparticles prepared through a sol–gel method. Adv. Powder Technol. 27, 2439–2447 (2016)CrossRefGoogle Scholar
  31. 31.
    N. Guy, S. Cakar, M. Ozacar, Comparison of palladium/zinc oxide photocatalysts prepared by different palladium doping methods for Congo red degradation. J. Colloid Interface Sci. 466, 128–137 (2018)CrossRefGoogle Scholar
  32. 32.
    X. Xing, D. Deng, Y. Li, N. Chen, X. Liu, Y. Wang, Macro-/nanoporous Al-doped ZnO via self-sustained decomposition of metal-organic complexes for application in degradation of Congo red. Ceram. Int. 42, 18914–18924 (2016)CrossRefGoogle Scholar
  33. 33.
    H. Jin Jung, R. Koutavarapu, S. Lee, J. Hyun Kim, H. Chul Choi, M. Yong Choi, Enhanced photocatalytic activity of Au-doped Au@ZnO core–shell flower-like nanocomposites. J. Alloys Compd. 735, 2058–2066 (2018)CrossRefGoogle Scholar
  34. 34.
    P. Pascariu, C. Cojocaru, N. Olaru, P. Samoila, A. Airinei, M. Ignat, L. Sacarescu, D. Timpu, Novel rare earth (RE-La, Er, Sm) metal doped ZnO photocatalysts for degradation of Congo-Red dye: synthesis, characterization and kinetic studies. J. Environ. Manage. 239, 225–234 (2019)CrossRefGoogle Scholar
  35. 35.
    A. Jose, K.R. Sunaja Devi, D. Pinheiro, S.L. Narayana, Electrochemical synthesis, photodegradation and antibacterial properties of PEG capped zinc oxide nanoparticles. J. Photochem. Photobiol. B. 187, 25–34 (2018)CrossRefGoogle Scholar
  36. 36.
    J. Fowsiya, G. Madhumitha, N.A. Al-Dhabi, M.V. Arasu, Photocatalytic degradation of Congo red using Carissa edulis extract capped zinc oxide nanoparticles. J. Photochem. Photobiol. B 162, 395–401 (2016)CrossRefGoogle Scholar
  37. 37.
    S.H. Hekmatara, M. Mohammadi, M. Haghani, Novel water-soluble, copolymer capped zinc oxide nanorods with high photocatalytic activity for degradation of organic pollutants from water. Chem. Phys. Lett. 730, 345–353 (2019)CrossRefGoogle Scholar
  38. 38.
    C.J. Sen, T.J. Kai, S.N. Shah, A. Mateblowski, J. Strunk, P.P. Eong, C.M. Nan, Morphological tunable three-dimensional flower-like zinc oxides with high photoactivity for targeted environmental remediation: degradation of emerging micropollutant and radicals trapping experiments. Taiwan Inst. Chem. Eng. 81, 206–217 (2017)CrossRefGoogle Scholar
  39. 39.
    A. Kaur, A. Umar, W.A. Anderson, S.K. Kansal, Facile synthesis of CdS/TiO2 nanocomposite and their catalytic activity for ofloxacin degradation under visible illumination. J. Photochem. Photobiol. A 360, 34–43 (2018)CrossRefGoogle Scholar
  40. 40.
    T. Ren, Z. Jin, J. Yang, R. Hu, F. Zhao, X. Gao, C. Zhao, Highly efficient and stable p-LaFeO3/n-ZnO heterojunction photocatalyst for phenol degradation under visible light irradiation. J. Hazard. Mater. 377, 195–205 (2019)CrossRefGoogle Scholar
  41. 41.
    N. Hairom, A.W. Mohammad, A. Kadhum, Effect of various zinc oxide nanoparticles in membrane photocatalytic reactor for Congo red dye treatment. Sep. Purif. Technol. 137, 74–81 (2014)CrossRefGoogle Scholar
  42. 42.
    A.A. Essawy, Silver imprinted zinc oxide nanoparticles: green synthetic approach, characterization and efficient sunlight-induced photocatalytic water detoxification. J. Cleaner Prod. 183, 1011–1020 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of ScienceKhon Kaen UniversityKhon KaenThailand

Personalised recommendations