Advertisement

Upconversion luminescence of Sr8MgY(PO4)7:Yb3+–Er3+/Ho3+ phosphors for optical thermometry

  • Wandi Lu
  • Jia ZhangEmail author
  • Jin Shi
Article
  • 17 Downloads

Abstract

In this work, to develop new upconversion (UC) luminescent material for optical thermometry, the Sr8MgY(PO4)7:Yb3+–Er3+/Ho3+ phosphors were explored, and their UC luminescence properties upon 980 nm excitation were investigated. The phase purity of the samples was checked by XRD patterns, which showed no secondary phase existed. For Yb3+–Er3+ codoped samples, three peaks including two green and one red emissions have been found, and the optimal Er3+ doping content was determined to be 3 mol% with regard to the green emissions. For Yb3+–Ho3+ codoped samples, the green and red emissions demonstrated different change with Ho3+ concentration, which could be owing to the cross-relaxation in Ho3+ ions. By studying the temperature-dependence of the emission intensities, it was suggested that several strategies can be used for temperature sensing, involving the I521/I548 and I660/I521 of Er3+ and I658/I548 of Ho3+. The absolute and relative sensitivities were evaluated and the Yb3+–Ho3+ codoped sample showed the higher sensitivities than Yb3+–Er3+ codoped sample. The above results indicated the present phosphors could be candidate luminescent materials for optical thermometry.

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 51602117 and 11604115).

References

  1. 1.
    C. Klein, M.K. Nazeeruddin, P. Liska, D.D. Censo, N. Hirata, E. Palomares, J.R. Durrant, M. Gratzel, Inorg. Chem. 44, 178–180 (2005)CrossRefGoogle Scholar
  2. 2.
    S. Guo, M.K. Tsang, W.S. Lo, J. Hao, W.T. Wong, Nanoscale 10, 2790–2803 (2018)CrossRefGoogle Scholar
  3. 3.
    L.L. Feng, F. He, B. Liu, G.X. Yang, S.L. Gai, P.P. Yang, C.X. Li, Y.L. Dai, R.C. Lv, J. Lin, Chem. Mater. 28, 7935–7946 (2016)CrossRefGoogle Scholar
  4. 4.
    A. Dubey, A.K. Soni, A. Kumari, R. Dey, V.K. Rai, J. Alloys Compd. 693, 194–200 (2017)CrossRefGoogle Scholar
  5. 5.
    H. Zou, X. Wang, Y. Hu, X. Zhu, Y. Sui, Z. Song, J. Electron. Mater. 45, 2745–2749 (2016)CrossRefGoogle Scholar
  6. 6.
    P. Du, L. Luo, J.S. Yu, J. Alloy. Compd. 632, 73–77 (2015)CrossRefGoogle Scholar
  7. 7.
    B.P. Kore, A. Kumar, A. Pandey, R.E. Kroon, J.J. Terblans, S.J. Dhoble, H.C. Swart, Inorg. Chem. 56, 4996–5005 (2017)CrossRefGoogle Scholar
  8. 8.
    T. Grzyb, S. Balabhadra, D. Przybylska, M. Węcławiak, J. Alloys Compd. 649, 606–616 (2015)CrossRefGoogle Scholar
  9. 9.
    M. Runowski, A. Bartkowiak, M. Majewska, I.R. Martín, S. Lis, J. Lumin. 201, 104–109 (2018)CrossRefGoogle Scholar
  10. 10.
    T. Pang, M.Y. Cai, Q.Q. Chen, J.P. Xie, R.H. Jian, W.H. Lu, J. Alloys Compd. 789, 904–909 (2019)CrossRefGoogle Scholar
  11. 11.
    J. Zhang, C. Jin, J. Alloys Compd. 783, 84–94 (2019)CrossRefGoogle Scholar
  12. 12.
    L. Han, H. Yao, S. Miao, S. Wang, J. Zhao, T. Sun, C. Guo, Z. Ci, C. Wang, J. Lumin. 197, 360–369 (2018)CrossRefGoogle Scholar
  13. 13.
    P. Du, L. Luo, J.S. Yu, J. Alloys Compd. 739, 926–933 (2018)CrossRefGoogle Scholar
  14. 14.
    V. Kumar, S. Som, S. Dutta, S. Das, H.C. Swart, RSC Adv. 6, 84914–84925 (2016)CrossRefGoogle Scholar
  15. 15.
    E.W. Barrera, Q. Madue, F.J. Novegil, A. Speghini, M. Bettinelli, Opt. Mater. 84, 354–359 (2018)CrossRefGoogle Scholar
  16. 16.
    M. Runowski, A. Shyichuk, A. Tymiński, T. Grzyb, V. Lavín, S. Lis, A.C.S. Appl, Mater. Interfaces 10, 17269–17279 (2018)CrossRefGoogle Scholar
  17. 17.
    W.J. Tang, H.J. Xue, RSC Adv. 4, 62230–62236 (2014)CrossRefGoogle Scholar
  18. 18.
    C.H. Huang, T.M. Chen, Inorg. Chem. 50, 5725–5730 (2011)CrossRefGoogle Scholar
  19. 19.
    J. Zhang, G. Chen, Z. Zhai, H. Chen, Y. Zhang, J. Alloys Compd. 771, 838–846 (2019)CrossRefGoogle Scholar
  20. 20.
    Y. Qi, S. Li, Q. Min, W. Lu, X. Xu, D. Zhou, J. Qiu, L. Wang, X. Yu, J. Alloys Compd. 742, 497–503 (2018)CrossRefGoogle Scholar
  21. 21.
    M. Pollnau, D.R. Gamelin, S.R. Luthi, H.U. Güdel, M.P. Hehlen, Phys. Rev. B 61, 3337 (2000)CrossRefGoogle Scholar
  22. 22.
    K. Krämer, D. Biner, G. Frei, H. Güdel, M. Hehlen, S. Lüthi, Chem. Mater. 16, 1244–1251 (2004)CrossRefGoogle Scholar
  23. 23.
    X. Bai, H.W. Song, G.H. Pan, Y.Q. Lei, T. Wang, X.G. Ren, S.Z. Lu, B. Dong, Q.L. Dai, L.B. Fan, J. Phys. Chem. C 111, 13611–13617 (2007)CrossRefGoogle Scholar
  24. 24.
    J. Zhang, B. Ji, G. Chen, Z. Hua, Inorg. Chem. 57, 5038–5040 (2018)CrossRefGoogle Scholar
  25. 25.
    I. Etchart, I. Hernández, A. Huignard, M. Bérard, W.P. Gillin, R.J. Curry, A.K. Cheetham, J. Mater. Chem. 21, 1387–1394 (2011)CrossRefGoogle Scholar
  26. 26.
    L.W. Yang, H.L. Han, Y.Y. Zhang, J.X. Zhong, J. Phys. Chem. C 113, 18995–18999 (2009)CrossRefGoogle Scholar
  27. 27.
    J.A. Capobianco, J.C. Boyer, F. Vetrone, A. Speghini, M. Bettinelli, Chem. Mater. 14, 2915–2921 (2002)CrossRefGoogle Scholar
  28. 28.
    H. Yu, S. Li, Y. Qi, W. Lu, X. Yu, X. Xu, J. Qiu, J. Lumin. 194, 433–439 (2018)CrossRefGoogle Scholar
  29. 29.
    H. Suo, C. Guo, T. Li, J. Phys. Chem. C 120, 2914–2924 (2016)CrossRefGoogle Scholar
  30. 30.
    M.A.R.C. Alencar, G.S. Maciel, C.B. de Araújo, Appl. Phys. Lett. 84, 4753–4755 (2004)CrossRefGoogle Scholar
  31. 31.
    X.F. Wang, C.-S. Liu, X.H. Yan, RSC Adv. 4, 24170–24175 (2014)CrossRefGoogle Scholar
  32. 32.
    B. Dong, D.P. Liu, X.J. Wang, T. Yang, S.M. Miao, C.R. Li, Appl. Phys. Lett. 90, 181117 (2007)CrossRefGoogle Scholar
  33. 33.
    X. Wang, Q. Liu, Y. Bu, C.-S. Liu, T. Liu, X. Yan, RSC Adv. 5, 86219–86236 (2015)CrossRefGoogle Scholar
  34. 34.
    A. Pandey, V.K. Rai, V. Kumar, V. Kumar, H.C. Swart, Sens. Actuators B Chem. 209, 352–358 (2015)CrossRefGoogle Scholar
  35. 35.
    J. Zhang, G. Chen, Z. Hua, Opt. Mater. Express 7, 2084–2089 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Physics Department and Jiangsu Key Laboratory of Modern Measurement Technology and IntelligenceHuaiyin Normal UniversityHuai’anChina
  2. 2.Jiangsu Key Laboratory for Chemistry of Low-Dimensional MaterialsHuaiyin Normal UniversityHuai’anChina

Personalised recommendations