Variation in chemical bath pH and the corresponding precursor concentration for optimizing the optical, structural and morphological properties of ZnO thin films

  • Sunil Kumar
  • H. C. Jeon
  • T. W. Kang
  • Rajni Seth
  • Sanjay Panwar
  • Surendra K. Shinde
  • D. P. Waghmode
  • Rijuta Ganesh Saratale
  • Ravi Kant ChoubeyEmail author


In the present study, ZnO thin films were deposited by chemical bath deposition carried out by selective correlation of varying (i) pH values at fixed concentration and (ii) concentration of the precursors at fixed pH. The selective correlations were done by using the characterization tools like X-ray diffraction, scanning electron microscopy, transmittance, refractive index, dielectric constant, Fourier-transform infrared spectroscopy and IV measurements. Transmittance was found to increase from 57 to 87% on varying the pH from basic side (10.8) to acidic side (pH 6.8) with a blue shift in band gap. The nature and morphology of the deposited films were found to be dependent on pH as well as concentration. Acidic pH 5.0 was found to be most suitable for deposition of highly transparent film with low absorption coefficient, refractive index and dielectric constant. On the other hand, nearly complete coverage of the substrate and high purity was observed in the ZnO thin films which was deposited by taking equal 100 mM concentration of Zn(NO3) and HMTA precursors at a fixed pH 5.0 as desired, sheet resistance was also found to increase on the acidic pH side which is useful in case of buffer layer solar cell application. These studies lay a foundation stone for understanding the optical and morphological parameters by selectively correlating the pH and concentration variation at the same time.



This work was partially supported by the National Research Foundation of Korea (NRF) vide Korea government (MSIP) Nos. 2016R1A6A1A03012877, 2018R1D1A1B07051095 and 2018R1D1A1B07050237. Authors from MM University, Mullana are also thankful to the Department of Science and Technology (DST), New Delhi, India for supporting the part of this research work (vide Project No. SR/FTP/PS-69/2008), dated 15/1/2010. One of the Authors, Ravi Kant Choubey is thankful to the Council of Science & Technology, Lucknow, Uttar Pradesh, India for the financial support (Vide No. CST/4051).


  1. 1.
    X. Wang, C.J. Summers, Z.L. Wang, Nano Lett. 4, 423 (2004)CrossRefGoogle Scholar
  2. 2.
    T.W. Hamann, A.B.F. Martinson, J.W. Elam, M.J. Pellin, J.T. Hupp, Adv. Mater. 20, 1560 (2008)CrossRefGoogle Scholar
  3. 3.
    H. Meruvu, M. Vangalapati, S.C. Chippada, S.R. Bammidi, Rasayan J. Chem. 4, 217 (2011)Google Scholar
  4. 4.
    N. Jones, B. Ray, K.T. Ranjit, A.C. Manna, FEMS Microbiol. Lett. 279, 71 (2008)CrossRefGoogle Scholar
  5. 5.
    X. Liu, X. Wu, H. Cao, R.P.H. Chang, J. Appl. Phys. 95, 3141 (2004)CrossRefGoogle Scholar
  6. 6.
    O. Lupan, L. Chow, G. Chai, L. Chernyak, O.L. Tirpak, H. Heinrich, Phys. Status Solidi A 205, 2673 (2008)CrossRefGoogle Scholar
  7. 7.
    L. Saad, M. Riad, J. Serb. Chem. Soc. 73, 997 (2008)CrossRefGoogle Scholar
  8. 8.
    J.A. Nikolaev, V.J. Rud’, J.V. Rud’, FTP 36 No 9, 1128 (2002). (In Russian)Google Scholar
  9. 9.
    D. Hariskos, S. Spiering, M. Powalla, Thin Solid Films 480–481, 99 (2005)CrossRefGoogle Scholar
  10. 10.
    A.K. Radzimska, T. Jesionowski, Materials 7, 2833 (2014)CrossRefGoogle Scholar
  11. 11.
    Z. Fan, J.G. Lu, J. Nanosci. Nanotechnol. 5, 1561 (2005)CrossRefGoogle Scholar
  12. 12.
    L. Vayssieres, K. Keis, S.E. Lindquist, A. Hagfeldt, J. Phys. Chem. B 105, 3350 (2001)CrossRefGoogle Scholar
  13. 13.
    B.D. Yao, Y.F. Chan, N. Wang, Appl. Phys. Lett. 81, 757 (2002)CrossRefGoogle Scholar
  14. 14.
    H. Yuan, Y. Zhang, J. Cryst. Growth 263, 119 (2004)CrossRefGoogle Scholar
  15. 15.
    Y. Sun, G.M. Fuge, M.N.R. Ashfold, Chem. Phys. Lett. 396, 21 (2004)CrossRefGoogle Scholar
  16. 16.
    Y.W. Heo, V. Varadarajan, M. Kaufman, K. Kim, D.P. Norton, F. Ren, P.H. Fleming, Appl. Phys. Lett. 81, 3046 (2002)CrossRefGoogle Scholar
  17. 17.
    W.T. Chiou, W.Y. Wu, J.M. Ting, Diam. Relat. Mater. 12, 1841 (2003)CrossRefGoogle Scholar
  18. 18.
    D. Lin, H. Wu, W. Pan, Adv. Mater. 19, 3968 (2007)CrossRefGoogle Scholar
  19. 19.
    D.S. Boyle, K. Govender, P. O’Brien, Chem. Commun. 1, 80 (2002)CrossRefGoogle Scholar
  20. 20.
    C.C. Lin, H.P. Chen, S.Y. Chen, Chem. Phys. Lett. 404, 30 (2005)CrossRefGoogle Scholar
  21. 21.
    D. Vernardou, G. Kenanakis, S. Couris, E. Koudoumas, E. Kymakis, N. Katsarakis, Thin Solid Films 515, 8764 (2007)CrossRefGoogle Scholar
  22. 22.
    D. Polsongkram, P. Chamninok, S. Pukird, O. Lupan, Physica B 403, 3713 (2008)CrossRefGoogle Scholar
  23. 23.
    R.K. Choubey, D. Desai, S.N. Kale, S. Kumar, J. Mater. Sci.: Mater. Electron. 27, 7890 (2016)Google Scholar
  24. 24.
    R.K. Choubey, S. Kumar, C.W. Lan, Adv. Nat. Sci.: Nanosci. Nanotechnol. 5, 025015 (2014)Google Scholar
  25. 25.
    Y.S. Lo, R.K. Choubey, W.C. Yu, W.T. Hsu, C.W. Lan, Thin Solid Films 520, 217 (2011)CrossRefGoogle Scholar
  26. 26.
    P. O’Brien, J. McAleese, J. Mater. Chem. 8, 2309 (1998)CrossRefGoogle Scholar
  27. 27.
    G. Hodes, Chemical Solution Deposition of Semiconductor Film (Dekker, New York, 2002)CrossRefGoogle Scholar
  28. 28.
    W.T. Hsu, S.S. Ro, H.R. Hsu, Y.C. Liu, Thin Solid Films 529, 293 (2013)Google Scholar
  29. 29.
    D. Byrne, E.M.C. Glyn, J. Cullin, M.O. Henry, Nanoscale 3, 1675 (2011)CrossRefGoogle Scholar
  30. 30.
    K. Govender, S.B. David, P.B. Kenway, P. O’Brien, J. Mater. Chem. 14, 2575 (2004)CrossRefGoogle Scholar
  31. 31.
    S. Xu, L.W. Zhong, Nano Res. 4, 1013 (2011)CrossRefGoogle Scholar
  32. 32.
    M.O. Lopez, A. Avila-Garcia, M.L. Albor-Aguilera, V.M. Sanchez-Resendiz, Mater. Res. Bull. 38, 1241 (2003)CrossRefGoogle Scholar
  33. 33.
    H. Tada, J. Am. Chem. Soc. 82, 255 (1960)CrossRefGoogle Scholar
  34. 34.
    T.A. Vijayan, R. Chandramohan, S. Valanarasu, J. Thirumalai, S. Venkateswaran, T. Mahalingam, S.R. Srikumar, Sci. Technol. Adv. Mater. 9, 035007 (2008)CrossRefGoogle Scholar
  35. 35.
    G.R. Patil, R.S. Gaikwad, M.B. Shelar, R.S. Mane, S.H. Han, B.N. Pawar, Arch. Phys. Res. 3, 401 (2012)Google Scholar
  36. 36.
    M. Shaban, M. Zayed, H. Hamdy, R. Soc. Chem. 7, 617 (2017)Google Scholar
  37. 37.
    K.V. Gurav, U.M. Patil, S.M. Pawar, J.H. Kim, C.D. Lokhande, J. Alloys Compd. 509, 7723 (2011)CrossRefGoogle Scholar
  38. 38.
    A. Janotti, C.G. Van de Walle, Rep. Prog. Phys. 72, 126501 (2009)CrossRefGoogle Scholar
  39. 39.
    E. Muchuweni, T.S. Sathiaraj, H. Nyakotyo, Heliyon 3, e00285 (2017)CrossRefGoogle Scholar
  40. 40.
    K. Nadarajah, C.Y. Chee, C.Y. Tan, J. Nanomater. (2013). CrossRefGoogle Scholar
  41. 41.
    E. Burstein, Phys. Rev. 93, 632 (1954)CrossRefGoogle Scholar
  42. 42.
    E. Burstein, Phys. Rev. 25, 7826 (1982)CrossRefGoogle Scholar
  43. 43.
    D.D.O. Eya, A.J. Ekpunobi, C.E. Okeke, Pac. J. Sci. Technol. 6, 16 (2005)Google Scholar
  44. 44.
    P. Sharma, A. Dahshan, K.A. Aly, J. Alloys Compd. 616, 323 (2014)CrossRefGoogle Scholar
  45. 45.
    S. Sharma, C. Periasamy, P. Chakrabarti, Electron. Mater. Lett. 11, 1093 (2015)CrossRefGoogle Scholar
  46. 46.
    P.B. Taunk, R. Das, D.P. Bisen, R.K. Tamrakar, N. Rathor, Karbala Int. J. Mod. Sci. 1, 159 (2015)CrossRefGoogle Scholar
  47. 47.
    R. Wahab, Y.S. Kim, H.S. Shin, Mater. Trans. 50, 2092 (2009)CrossRefGoogle Scholar
  48. 48.
    G.M. Lampman, D.L. Pavia, G.S. Kriz, J.R. Vyvyan, Spectroscopy, 4th edn. (Cengage Learning India, New Delhi, 2010), p. 56Google Scholar
  49. 49.
    A. Sugunan, C.W. Hemant, M. Boman, J. Dutta, J. Sol-Gel Sci. Technol. 39, 49 (2006)CrossRefGoogle Scholar
  50. 50.
    S. Xu, Semiconductor Nanomaterials for Flexible Technologies. 2010; 197CrossRefGoogle Scholar
  51. 51.
    W.J. Li, E.W. Shi, W.Z. Zhong, Z.W. Yin, J. Cryst. Growth 203, 186 (1999)CrossRefGoogle Scholar
  52. 52.
    L. Vayssieres, Adv. Semicond. Nanostruct. C. R. Chim. 9, 691 (2006)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Nano Information Technology Academy, Dongguk UniversitySeoulSouth Korea
  2. 2.Department of PhysicsMaharishi Markandeshwar UniversityAmbalaIndia
  3. 3.School of Basic and Applied SciencesMaharaja Agrasen UniversitySolanIndia
  4. 4.Department of Biological and Environmental Science, College of Life Science and BiotechnologyDongguk UniversityGoyang-siSouth Korea
  5. 5.Department of ChemistrySadguru Gadage Maharaj CollegeKaradIndia
  6. 6.Research Institute of Biotechnology and Medical Converged ScienceDongguk University-SeoulGoyang-siSouth Korea
  7. 7.Department of Applied Physics, Amity Institute of Applied Sciences (AIAS)Amity UniversityNoidaIndia

Personalised recommendations