Facile hydrothermal synthesis of egg-like BiVO4 nanostructures for photocatalytic desulfurization of thiophene under visible light irradiation

  • Mehdi Mousavi-KamazaniEmail author


Herein, egg-shape bismuth vanadate (BiVO4) nanostructures were prepared by a one-pot and surfactant-free hydrothermal method using ethylenediamine and hydrazine hydrate as novel reactants. The obtained products were identified by FTIR, XRD, SEM, EDS, and DRS analyzes. Finally, the photocatalytic oxidation activity of as-prepared nanostructures on desulfurization of thiophene dissolved in n-hexane as a model light oil was studied. According to the results, the desulfurization rate was 81% after 180 min, which is higher than the other reported morphologies for pure BiVO4. Also, the trapping experiments of radical active species showed that superoxide (O2) and holes (h+) are the most active species in the process of desulfurization oxidation from thiophene. In addition, the photocatalytic recyclability test indicated that after five times the reuse of the as-synthesized nanostructures does not occur a significant change in the oxidation efficiency.



The author thanked the University of Semnan for supporting this work.


  1. 1.
    X. Li, S. Ma, H. Qian, Y. Zhang, S. Zuo, C. Yaoa, Upconversion nanocompossite CeO2:Tm3+/attapulgite intermediated by carbon quantum dots for photocatalytic desulfurization. Powder Technol. 351, 38–45 (2019)CrossRefGoogle Scholar
  2. 2.
    J. Wu, J. Li, J. Liu, J. Bai, L. Yang, A novel Nb2O5/Bi2WO6 heterojunction photocatalytic oxidative desulfurization catalyst with high visible light-induced photocatalytic activity. RSC Adv. 7, 51046 (2017)CrossRefGoogle Scholar
  3. 3.
    S.F. Song, S.K. Shen, J.X. Yang, D.D. Hu, A green synthesis of CTAB–PTP/PAM microhydrogel and its application in oxidation of DBT. J. Mater. Sci. 47, 2501–2508 (2012)CrossRefGoogle Scholar
  4. 4.
    H.W. Yang, B. Jiang, Y.L. Sun, L.H. Zhang, Z.N. Sun, J.Y. Wang, X.W. Tantai, Polymeric cation and isopolyanion ionic self-assembly: novel thin-layer mesoporous catalyst for oxidative desulfurization. Chem. Eng. J. 317, 32–41 (2017)CrossRefGoogle Scholar
  5. 5.
    X.Y. Zeng, X.Y. Xiao, Y. Li, J.Y. Chen, H.L. Wang, Deep desulfurization of liquid fuels with molecular oxygen through graphene photocatalytic oxidation. Appl. Catal. B 209, 98–109 (2017)CrossRefGoogle Scholar
  6. 6.
    L. Wang, W.Y. Wang, N. Mominou, L.X. Liu, S.Z. Li, Ultra-deep desulfurization of gasoline through aqueous phase in situ hydrogenation and photocatalytic oxidation. Appl. Catal. B 193, 180–188 (2016)CrossRefGoogle Scholar
  7. 7.
    J. Zhang, D.S. Zhao, J.L. Wang, L.Y. Yang, Photocatalytic oxidation of dibenzothiophene using TiO2/bamboo charcoal. J. Mater. Sci. 44, 3112–3117 (2009)CrossRefGoogle Scholar
  8. 8.
    H.W. Zheng, Z. Sun, X.L. Chen, Q. Zhao, X.H. Wang, Z.J. Jiang, A micro reaction-controlled phase-transfer catalyst for oxidative desulfurization based on polyoxometalate modified silica. Appl. Catal. A 467, 26–32 (2013)CrossRefGoogle Scholar
  9. 9.
    W.S.A. Rahma, F.S. Mjalli, T. Al-Wahaibi, A.A. Al-Hashmi, Polymeric-based deep eutectic solvents for effective desulfurization of liquid fuel at ambient conditions. Chem. Eng. Res. Des. 120, 271–283 (2017)CrossRefGoogle Scholar
  10. 10.
    C.E.D.A. Padilha, P.V.F. Dantas, F.C.S. Júnior, S.D.O. Júnior, C.D.C. Nogueira, D.F.D.S. Souza, J.A.D. Oliveira, G.R.D. Macedo, E.S.D. Santos, Recovery and concentration of ortho-phenylphenol from biodesulfurization of 4-methyl dibenzothiophene by aqueous two-phase flotation. Sep. Purif. Technol. 176, 306–312 (2017)CrossRefGoogle Scholar
  11. 11.
    X.N. Sun, B.J. Tatarchuk, Photo-assisted adsorptive desulfurization of hydrocarbon fuels over TiO2 and Ag/TiO2. Fuel 183, 550–556 (2016)CrossRefGoogle Scholar
  12. 12.
    L.Z. Zhuang, Q.H. Li, S.X. Chen, X.N. Hou, J.T. Lin, In-situ preparation of porous carbon-supported molybdenum dioxide and its performance in the oxidative desulfurization of thiophene. J. Mater. Sci. 49, 5606–5616 (2014)CrossRefGoogle Scholar
  13. 13.
    F. Lin, Z. Shao, P. Li, Z. Chen, X. Liu, M. Li, B. Zhang, J. Huang, G. Zhu, B. Dong, Low-cost dual co-catalysts BiVO4 for highly efficient visible photocatalytic oxidation. RSC Adv. 7, 15053 (2017)CrossRefGoogle Scholar
  14. 14.
    F. Lin, D. Wang, Z. Jiang, Y. Ma, L. Jun, R. Lia, C. Li, Photocatalytic oxidation of thiophene on BiVO4 with dual co-catalysts Pt and RuO2 under visible light irradiation using molecular oxygen as oxidant. Energy Environ. Sci. 5, 6400–6406 (2012)CrossRefGoogle Scholar
  15. 15.
    F. Lin, Z.X. Jiang, N.F. Tang, C. Zhang, Z.P. Chen, T.F. Liu, B. Dong, Photocatalytic oxidation of thiophene on RuO2/SO4 2−-TiO2: insights for cocatalyst and solid-acid. Appl. Catal. B 188, 253–258 (2016)CrossRefGoogle Scholar
  16. 16.
    L. Yun, Z. Yang, Z.B. Yu, T. Cai, Y. Li, C. Guo, C. Qia, T. Rena, Synthesis of four-angle star-like CoAl-MMO/BiVO4 p–n heterojunction and its application in photocatalytic desulfurization. RSC Adv. 7, 25455 (2017)CrossRefGoogle Scholar
  17. 17.
    J. Wu, F. Duan, Y. Zheng, Y. Xie, Synthesis of Bi2WO6 nanoplate-built hierarchical nest-like structures with visible-light-induced photocatalytic activity. J. Phys. Chem. C 111, 12866–12871 (2007)CrossRefGoogle Scholar
  18. 18.
    E. Aguilera-Ruiz, U.M. García-Pérez, M. de la Garza-Galvána, P. Zambrano-Robledoa, B. Bermúdez-Reyes, J. Peral, Efficiency of Cu2O/BiVO4 particles prepared with a new so procedure on the degradation of dyes under visible-light irradiation. Appl. Surf. Sci. 328, 361–367 (2015)CrossRefGoogle Scholar
  19. 19.
    C. Ravidhas, A.J. Josephine, P. Sudhagar, A. Devadoss, C. Terashima, K. Nakata, A. Fujishima, A.M. EzhilRaj, C. Sanjeeviraja, Facile synthesis of nanostructured monoclinic bismuth vanadate by a co-precipitation method: Structural, optical and photocatalytic properties. Mater. Sci. Semicond. Process. 30, 343–351 (2015)CrossRefGoogle Scholar
  20. 20.
    W. Yin, W. Wang, L. Zhou, S. Sun, L. Zhang, CTAB-assisted synthesis of monoclinic BiVO4 photocatalyst and its highly efficient degradation of organic dye under visible-light irradiation. J. Hazard. Mater. 173, 194–199 (2010)CrossRefGoogle Scholar
  21. 21.
    M. Wang, Q. Liu, Y. Che, L. Zhang, D. Zhang, Characterization and photocatalytic properties of N-doped BiVO4 synthesized via a sol–gel method. J. Alloys Compd. 548, 70–76 (2013)CrossRefGoogle Scholar
  22. 22.
    W. Liu, G. Zhao, M. An, L. Chang, Solvothermal synthesis of nanostructured BiVO4 with highly exposed (0 1 0) facets and enhanced sunlight-driven photocatalytic properties. Appl. Surf. Sci. 357, 1053–1063 (2015)CrossRefGoogle Scholar
  23. 23.
    P. Madhusudan, M. Kumar, T. Ishigaki, K. Toda, K. Uematsu, M. Sato, Hydrothermal synthesis of meso/macroporous BiVO4 hierarchical particles and their photocatalytic degradation properties under visible light irradiation. Environ. Sci. Pollut. Res. 20, 6638–6645 (2013)CrossRefGoogle Scholar
  24. 24.
    I. Khan, S. Ali, M. Mansha, A. Qurashi, Sonochemical assisted hydrothermal synthesis of pseudo-flower shaped Bismuth vanadate (BiVO4) and their solar-driven water splitting application. Ultrason. Sonochem. 36, 386–392 (2017)CrossRefGoogle Scholar
  25. 25.
    S.M. Sun, W.Z. Wang, L. Zhou, H.L. Xu, Efficient methylene blue removal over hydrothermally synthesized starlike BiVO4. Ind. Eng. Chem. Res. 48, 1735–1739 (2009)CrossRefGoogle Scholar
  26. 26.
    Q. Wu, R. Han, P. Chen, X. Qi, W. Yao, Novel synthesis and photocatalytic performance of BiVO4 with tunable morphologies and macroscopic structures. Mater. Sci. Semicond. Process. 38, 271–277 (2015)CrossRefGoogle Scholar
  27. 27.
    Y.N. Guo, X. Yang, F.Y. Ma, K.X. Li, L. Xu, X. Yuan, Y.H. Guo, Additive-free controllable fabrication of bismuth vanadates and their photocatalytic activity toward dye degradation. Appl. Surf. Sci. 256, 2215–2222 (2010)CrossRefGoogle Scholar
  28. 28.
    G.Q. Tan, L.L. Zhang, H.J. Ren, S.S. Wei, J. Huang, A. Xia, Effects of pH on the hierarchical structures and photocatalytic performance of BiVO4 powders prepared via the microwave hydrothermal method. ACS Appl. Mater. Interfaces. 5, 5186–5193 (2013)CrossRefGoogle Scholar
  29. 29.
    S. Obregón, A. Caballero, G. Colón, Hydrothermal synthesis of BiVO4: structural and morphological influence on the photocatalytic activity. Appl. Catal. B 117–118, 59–66 (2012)CrossRefGoogle Scholar
  30. 30.
    M. Mousavi-Kamazani, Z. Zarghami, R. Rahmatolahzadeh, M. Ramezani, Solvent-free synthesis of Cu-Cu2O nanocomposites via green thermal decomposition route using novel precursor and investigation of its photocatalytic activity. Adv. Powder Technol. 28, 2078–2086 (2017)CrossRefGoogle Scholar
  31. 31.
    M. Mousavi-Kamazani, Facile sonochemical-assisted synthesis of Cu/ZnO/Al2O3 nanocomposites under vacuum: optical and photocatalytic studies. Ultrason. Sonochem. 58, 104636 (2019)CrossRefGoogle Scholar
  32. 32.
    S. Alizadeh, M. Mousavi-Kamazani, M. Salavati-Niasari, Hydrothermal synthesis of rod-like LaOCl nanoparticles from new precursors. J. Clust. Sci. 26, 645–652 (2015)Google Scholar
  33. 33.
    M. Mousavi-Kamazani, S. Alizadeh, F. Ansari, M. Salavati-Niasari, A controllable hydrothermal method to prepare La(OH)3 nanorods using new precursors. J. Rare Earths 33, 425–431 (2015)CrossRefGoogle Scholar
  34. 34.
    A.M. Latifi, M. Mirzaei, M. Mousavi-Kamazani, Z. Zarghami, Rice-like Ag/Al2O3 nanocomposites preparation from AlOOH nanostructures synthesized via a facile hydrothermal route for azo dyes photocatalytic degradation and Pb2+ adsorption. J. Mater. Sci. 29, 10234–10245 (2017)Google Scholar
  35. 35.
    M. Panahi-Kalamuei, M. Mousavi-Kamazani, M. Salavati-Niasari, Self-assembly of nanoparticles to form tree-like tellurium nanostructures using novel starting reagent. Mater. Lett. 136, 218–221 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.New Technology FacultySemnan UniversitySemnanIran

Personalised recommendations