Hydrothermal synthesis of nanoporous lead selenide thin films: photoelectrochemical and resistive switching memory applications

  • Tejasvinee S. Bhat
  • Archana S. Kalekar
  • Dhanaji S. Dalavi
  • Chetan C. Revadekar
  • Atul C. Khot
  • Tukaram D. DongaleEmail author
  • Pramod S. PatilEmail author


The interconnected nanoporous lead selenide (PbSe) thin films were synthesized with the aid of polyvinyl alcohol (PVA) as a surface directing agent by simple hydrothermal route. Films were deposited with different time intervals like 1, 2 and 3 h. Effect of time variation was studied by structural, morphological and optical characterizations. XRD analysis revealed that the film exhibit a cubic phase of PbSe. SEM study shows an evolution in nanoflakes like morphological feature. It is observed that, the nanoflakes become denser with an increase in the diameter of the platelets as the deposition time increases. Interconnected nanoporous network, forming well defined 3D nanoenvelopes has been developed to analyze solar cell and resistive switching properties. The photoelectrochemical (PEC) performance of nanoporous PbSe thin films was tested in Polysulfide electrolyte. Among all PbSe films, the sample prepared at 3 h shows higher PEC performance with maximum short circuit current 97 µA/cm2 and open circuit voltage 110 mV. In addition to this, Ag/PbSe/FTO thin film device shows the photo-induced resistive switching behavior. The non-volatile memory results suggested that the memory device is able to switch up to 104 cycles and store the data up to 103 s with good uniformity during the resistive switching process. The analysis of I–V results revealed that the Ohmic and space-charge-limited current are responsible for current conduction in the Ag/PbSe/FTO thin film memory device. The results of present investigation suggest that the nanoporous lead selenide thin films are potential candidate for the photoelectrochemical and resistive switching memory applications.



Dr. A. S. Kalekar would like to thank ICT for the financial assistance under TEQIP-III Program. Dr. Dhanaji S. Dalavi would like to thank Shivaji University, Kolhapur for the financial assistance under the ‘Research Initiation Scheme’ letter no. SU/C & U.D Section/86/233. Dr. T. D. Dongale would like to thank the Shivaji University, Kolhapur for the financial assistance under the ‘Research Initiation Scheme’. This work was partially supported by the University Grant Commission, New Delhi, Government of India through Project No. 43-517/2014 (SR).

Compliance with ethical standards

Conflict of interest

There are no conflicts to declare.

Supplementary material

10854_2019_2122_MOESM1_ESM.docx (184 kb)
Supplementary material 1 (DOCX 183 kb)


  1. 1.
    A.A. Khan, I. Khan, I. Ahmad, Z. Ali, Mater. Sci. Semicond. Proc. 48, 85 (2016)CrossRefGoogle Scholar
  2. 2.
    T.S. Bhat, S.S. Mali, A.D. Sheikh, S.D. Korade, K.K. Pawar, C.K. Hong, J.H. Kim, P.S. Patil, Opt. Mater. 73, 781 (2017)CrossRefGoogle Scholar
  3. 3.
    S. Thanikaikarasan, T. Mahalingam, V. Dhanasekaran, A. Kathalingam, J.K. Rhee, J. Mater. Sci. 23, 1562 (2012)Google Scholar
  4. 4.
    J. Xu, J.P. Ge, Y.D. Li, J. Phys. Chem. B 110, 2497 (2006)CrossRefGoogle Scholar
  5. 5.
    T.S. Bhat, S.S. Mali, A.D. Sheikh, N.L. Tarwal, S.D. Korade, C.K. Hong, J.H. Kim, P.S. Patil, Mater. Today Comm. 16, 186 (2018)CrossRefGoogle Scholar
  6. 6.
    T.S. Bhat, S.A. Vanalakar, R.S. Devan, S.S. Mali, S.A. Pawar, Y.R. Ma, C.K. Hong, J.H. Kim, P.S. Patil, J. Mater. Sci.: Mater. Electron. 27, 4996 (2016)Google Scholar
  7. 7.
    T.S. Bhat, A.V. Shinde, R.S. Devan, A.M. Teli, Y.R. Ma, J.H. Kim, P.S. Patil, Appl. Phys. A 124, 34 (2018)CrossRefGoogle Scholar
  8. 8.
    F.W. Wise, Acc. Chem. Res. 33, 773 (2000)CrossRefGoogle Scholar
  9. 9.
    R.J. Ellingson, M.C. Beard, J.C. Johnson, P. Yu, O.I. Micic, A.J. Nozik, A. Shabaev, A.L. Efros, Nano Lett. 5, 865 (2005)CrossRefGoogle Scholar
  10. 10.
    A.D. Andreev, A.A. Lipovskii, Phys. Rev. B 59, 15402 (1999)CrossRefGoogle Scholar
  11. 11.
    E. Lifshitz, M. Bashouti, V. Kloper, A. Kigel, M.S. Eisen, S. Berger, Nano Lett. 3, 857 (2003)CrossRefGoogle Scholar
  12. 12.
    W. Zhang, L. Zhang, Y. Cheng, Z. Hui, X. Zhang, Y. Xie, Y.Q. Qian, Mater. Res. Bull. 35, 2000 (2009)CrossRefGoogle Scholar
  13. 13.
    T. Kanniainen, S. Lindroos, J. Ihanus, M. Leskela, J. Mater. Chem. 6, 983 (1996)CrossRefGoogle Scholar
  14. 14.
    N. Mukherjee, A. Mondal, J. Electron. Mater. 39, 1177 (2010)CrossRefGoogle Scholar
  15. 15.
    E.I. Rogacheva, T.V. Tavrina, S.N. Grigorov, O.N. Nashchekina, V.V. Volobuev, A.G. Fedorov, K.A. Nasedkin, M.S. Dresselhaus, J. Electron. Mater. 31, 298 (2002)CrossRefGoogle Scholar
  16. 16.
    C. Wang, G. Zhang, S. Fan, Y. Li, J. Phys. Chem. Solids 62, 1957 (2001)CrossRefGoogle Scholar
  17. 17.
    T.S. Bhat, R.S. Devan, S.S. Mali, A.S. Kamble, S.A. Pawar, I.Y. Kim, Y.R. Ma, C.K. Hong, J.H. Kim, P.S. Patil, J. Mater. Sci. 25, 4501 (2014)Google Scholar
  18. 18.
    A.C. Khot, N.D. Desai, K.V. Khot, M.M. Salunkhe, M.A. Chougule, T.M. Bhave, R.K. Kamat, K.P. Musselman, T.D. Dongale, Mater. Des. 151, 37 (2018)CrossRefGoogle Scholar
  19. 19.
    W.P. Lin, S.J. Liu, T. Gong, Q. Zhao, W. Huang, Adv. Mater. 26, 570 (2014)CrossRefGoogle Scholar
  20. 20.
    T.D. Dongale, A.A. Bagade, S.V. Mohite, A.D. Rananavare, M.K. Orlowski, R.K. Kamat, K.Y. Rajpure, J. Mater. Sci. 29, 3231 (2018)Google Scholar
  21. 21.
    P. Rananavare, S.J. Kadam, S.V. Prabhu, S.S. Chavan, P.V. Anbhule, T.D. Dongale, Mater. Lett. 232, 99 (2018)CrossRefGoogle Scholar
  22. 22.
    S.T. Gurme, T.D. Dongale, S.N. Surwase, S.D. Kumbhar, G.M. More, V.L. Patil, P.S. Patil, R.K. Kamat, J.P. Jadhav, Phys. Status Solidif. 215, 1800550 (2018)CrossRefGoogle Scholar
  23. 23.
    F.H.A. El-kader, N.A. Hakeem, I.S. Elashmawi, A.M. Ismail, Indian J. Phys. 87, 983 (2013)CrossRefGoogle Scholar
  24. 24.
    S. Gorer, G. Hodes, J. Phys. Chem. 98, 5338 (1994)CrossRefGoogle Scholar
  25. 25.
    B.D. Cullity, Elements of X-ray diffraction (Addison-Wesley, Boston, 1956)Google Scholar
  26. 26.
    X. Wang, K. Li, Y. Dong, K. Jiang, Cryst. Res. Technol. 45, 94 (2010)CrossRefGoogle Scholar
  27. 27.
    D.P. Dubal, G.S. Gund, R. Holze, H.S. Jadhav, C.D. Lokhande, C.J. Park, Dalton Trans. 42, 6459 (2013)CrossRefGoogle Scholar
  28. 28.
    I. Stambolova, V. Blaskov, M. Shipochka, S. Vassilev, V. Petkova, A. Loukanov, Mater. Sci. Eng., B 177, 1029 (2012)CrossRefGoogle Scholar
  29. 29.
    D.S. Dalavi, M.J. Suryavanshi, D.S. Patil, S.S. Mali, A.V. Moholkar, S.S. Kalagi, S.A. Vanalkar, S.R. Kang, J.H. Kim, P.S. Patil, Appl. Surf. Sci. 257, 2647 (2011)CrossRefGoogle Scholar
  30. 30.
    A. Kamble, B. Sinha, G. Agawane, S. Vanalakar, I.Y. Kim, J.Y. Kim, S.S. Kale, P. Patil, J.H. Kim, Phys. Chem. Chem. Phys. 18, 28024 (2016)CrossRefGoogle Scholar
  31. 31.
    J.J. Zhu, H. Wang, S. Xu, H.Y. Chen, Langmuir 18, 3306 (2002)CrossRefGoogle Scholar
  32. 32.
    S. Gorer, A.A. Yaron, G. Hodes, J. Phys. Chem. 99, 16442 (1995)CrossRefGoogle Scholar
  33. 33.
    B. Li, Y. Xie, Y. Xu, C. Wu, Z. Li, J. Solid State Chem. 179, 56 (2006)CrossRefGoogle Scholar
  34. 34.
    T.S. Bhat, S.S. Mali, S.D. Korade, J.S. Shaikh, M.M. Karanjkar, C.K. Hong, J.H. Kim, P.S. Patil, J. Mater. Sci.: Mater. Electron. 28, 304 (2017)Google Scholar
  35. 35.
    R.D. Sun, A. Nakajima, A. Fujishima, T. Watanabe, K. Hashimoto, J. Phys. Chem. B. 105, 1984 (2001)CrossRefGoogle Scholar
  36. 36.
    S.S. Mali, C.A. Betty, P.N. Bhosale, P.S. Patil, Electrochim. Acta 59, 113 (2012)CrossRefGoogle Scholar
  37. 37.
    N. Li, H. Wang, Q. Lin, H. Shen, A. Wang, L. Qian, F. Guo, L.S. Li, RSC Adv. 5, 39714 (2015)CrossRefGoogle Scholar
  38. 38.
    M. Kouhnavard, S. Ikeda, N.A. Ludin, N.B. Ahmad Khairudin, B.V. Ghaffari, M.A. Mat Teridi, M.A. Ibrahim, S. Sepeai, K. Sopian, Renew. Sustain. Energy Rev. 37, 397 (2014)CrossRefGoogle Scholar
  39. 39.
    V.S. Dongle, A.A. Dongare, N.B. Mullani, P.S. Pawar, P.B. Patil, J. Heo, T.J. Park, T.D. Dongale, J. Mater. Sci.: Mater. Electron. 29, 18733 (2018)Google Scholar
  40. 40.
    S.R. Patil, M.Y. Chougale, T.D. Rane, S.S. Khot, A.A. Patil, O.S. Bagal, S.D. Jadhav, A.D. Sheikh, S. Kim, T.D. Dongale, Electronics 7, 445 (2018)CrossRefGoogle Scholar
  41. 41.
    T.D. Dongale, K.V. Khot, S.V. Mohite, N.K. Desai, S.S. Shinde, V.L. Patil, S.A. Vanalkar, A.V. Moholkar, K.Y. Rajpure, P.N. Bhosale, P.S. Patil, P.K. Gaikwad, R.K. Kamat, Int. Nano Lett. 7, 209 (2017)CrossRefGoogle Scholar
  42. 42.
    R. Waser, R. Dittmann, G. Staikov, K. Szot, Adv. Mater. 21, 2632 (2009)CrossRefGoogle Scholar
  43. 43.
    G. Bersuker, D.C. Gilmer, D. Veksler, P. Kirsch, L. Vandelli, A. Padovani, L. Larcher, K. McKenna, A. Shluger, V. Iglesias, M.J. Porti, Appl. Phys. 110, 124518 (2011)CrossRefGoogle Scholar
  44. 44.
    Y. Yang, W. Lu, Nanoscale 5, 10076 (2013)CrossRefGoogle Scholar
  45. 45.
    T.D. Dongale, K.P. Patil, P.K. Gaikwad, R.K. Kamat, Mater. Sci. Semicond. Proc. 38, 228 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Tejasvinee S. Bhat
    • 1
    • 2
  • Archana S. Kalekar
    • 3
  • Dhanaji S. Dalavi
    • 4
  • Chetan C. Revadekar
    • 5
  • Atul C. Khot
    • 5
  • Tukaram D. Dongale
    • 5
    Email author
  • Pramod S. Patil
    • 1
    • 2
    Email author
  1. 1.Thin Film Materials Laboratory, Department of PhysicsShivaji UniversityKolhapurIndia
  2. 2.School of Nanoscience and BiotechnologyShivaji UniversityKolhapurIndia
  3. 3.Department of PhysicsInstitute of Chemical TechnologyMumbaiIndia
  4. 4.Department of PhysicsKrishna Mahavidyalaya, Rethare (Bk)Karad, SataraIndia
  5. 5.Computational Electronics and Nanoscience Research Laboratory, School of Nanoscience and BiotechnologyShivaji UniversityKolhapurIndia

Personalised recommendations