Advertisement

Broadband near-IR photoluminescence in Ni2+ doped gallium silicate glass–ceramics

  • Endale T. BasoreEmail author
  • Xiaofeng Liu
  • Jianrong QiuEmail author
Article
  • 34 Downloads

Abstract

Broadband and tunable near-infrared (NIR) emission of Ni2+ doped glass–ceramics (GCs) is highly attractive due to their potential to address the challenge of broadband optical amplification in the optical communication band. However, optical activity of Ni2+ in different glass matrix as well as nucleation and crystallization processes in relevant glasses have not been understood fully. Here, broadband NIR photoluminescence was realized through precipitation of LiGa5O8:Ni2+ nanocrystals (NCs) within an alkali gallium-silicate glass matrix by melt-quenching and successive heat treatment. Upon exciting by a 980 nm laser diode, we observed NIR photoluminescence band centered at ~ 1310 nm with full width at half maximum of wider than 300 nm, which was originated from 3T2g(3F) → 3A2g(3F) electronic transition of octahedral coordinated Ni2+ in LiGa5O8 NCs embedded in the GCs. Controlled precipitation of NCs, LiGa5O8:Ni2+ and Ga2O3:Ni2+ were achieved by tailoring the composition of alkali gallium-silicate glass matrix. ab initio molecular dynamics simulation was carried out to clarify the formation of nanophases in the glass system. We confirmed that optical properties of transparent GCs containing Ni2+ NCs can be realized by changing molar percentages of Ga2O3. Our results offer a new insight into the precipitation of NCs in oxide glasses and Ni2+ doped GCs, which may be applicable in the photonic fields, such as optical amplifier and laser.

Notes

Acknowledgements

This work was financially supported by the National Key R&D Program of China (Grant No. 2018YFB1107200), the National Natural Science Foundation of China (Grant No. 51772270), Open funds of State Key Laboratory of Precision Spectroscopy, East China Normal University, State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences and the Fundamental Research Funds for the Central Universities.

Supplementary material

10854_2019_2121_MOESM1_ESM.docx (724 kb)
Supplementary material 1 (DOCX 723 kb)

References

  1. 1.
    C. Lin, C. Liu, Z. Zhao, L. Li, C. Bocker, C. Rüssel, Broadband near-IR emission from cubic perovskite KZnF3: Ni2+ nanocrystals embedded glass-ceramics. Opt. Lett. 40, 5263–5266 (2015)CrossRefGoogle Scholar
  2. 2.
    S. Zhou, N. Jiang, H. Dong, H. Zeng, J. Hao, J. Qiu, Size-induced crystal field parameter change and tunable infrared photoluminescence in Ni2+-doped high-gallium nanocrystals embedded glass ceramics. Nanotechnology. 19, 015702 (2007)CrossRefGoogle Scholar
  3. 3.
    J. Cao, H. Guo, F. Hu, L. Li, S. Xu, M. Peng, Instant precipitation of KMgF3:Ni2+ nanocrystals with broad emission (1.3–2.2 μm) for potential combustion gas sensors. J. Am. Ceram. Soc. 101, 3890–3899 (2018)CrossRefGoogle Scholar
  4. 4.
    S. Xu, D. Deng, R. Bao, H. Ju, S. Zhao, H. Wang, B. Wang, Ni2+-doped new silicate glass-ceramics for super broadband optical amplification. JOSA B 25, 1548–1552 (2008)CrossRefGoogle Scholar
  5. 5.
    X. Liu, J. Zhou, S. Zhou, Y. Yue, J. Qiu, Transparent glass-ceramics functionalized by dispersed crystals. Prog. Mater. Sci. 97, 38–96 (2018)CrossRefGoogle Scholar
  6. 6.
    S. Zhou, H. Dong, G. Feng, B. Wu, H. Zeng, J. Qiu, Broadband optical amplification in silicate glass–ceramic containing β-Ga2O3:Ni2+ nanocrystals. Opt. Express 15, 5477–5481 (2007)CrossRefGoogle Scholar
  7. 7.
    L.R. Pinckney, G.H. Beall, in Transition element-doped crystals in glass. Inorganic Optical Materials III (2001), pp. 93–100Google Scholar
  8. 8.
    I. Morad, X. Liu, J. Qiu, Surface crystallized Mn-doped glass-ceramics for tunable photoluminescence. J. Am. Ceram. Soc. (2019).  https://doi.org/10.1111/jace.16473 Google Scholar
  9. 9.
    N. Golubev, E. Ignat’eva, R. Lorenzi, A. Paleari, V. Sigaev, Broadband photoluminescence in nanostructured glasses. Glass Ceram. 70, 124–129 (2013)CrossRefGoogle Scholar
  10. 10.
    T. Suzuki, Y. Arai, Y. Ohishi, Crystallization processes of Li2O–Ga2O3–SiO2–NiO system glasses. J. Non-Cryst. Solids 353, 36–43 (2007)CrossRefGoogle Scholar
  11. 11.
    N. Golubev, V. Savinkov, E. Ignat’eva, S. Lotarev, P. Sarkisov, V. Sigaev, L. Bulatov, V. Mashinskii, Nickel-doped gallium-containing glasses luminescent in the near-infrared spectral range. Glass Phys. Chem 36, 657–662 (2010)CrossRefGoogle Scholar
  12. 12.
    S. Khonthon, S. Morimoto, Y. Ohishi, Photoluminescence characteristics of Ni2+ ion-doped glasses and glass-ceramics in relation to its coordination number. J. Solid Mech. Mater. Eng. 1, 439–446 (2007)CrossRefGoogle Scholar
  13. 13.
    S. Zhou, G. Feng, B. Wu, N. Jiang, S. Xu, J. Qiu, Intense infrared photoluminescence in transparent glass-ceramics containing β-Ga2O3:Ni2+ nanocrystals. J. Phys. Chem. C 111, 7335–7338 (2007)CrossRefGoogle Scholar
  14. 14.
    D. Chen, Near-infrared long-lasting phosphorescence in transparent glass ceramics embedding Cr3+-doped LiGa5O8 nanocrystals. J. Eur. Ceram. Soc. 34, 4069–4075 (2014)CrossRefGoogle Scholar
  15. 15.
    S. Zhou, N. Jiang, B. Wu, J. Hao, J. Qiu, Ligand-driven wavelength-tunable and ultra-broadband infrared photoluminescence in single-ion-doped transparent hybrid materials. Adv. Funct. Mater. 19, 2081–2088 (2009)CrossRefGoogle Scholar
  16. 16.
    M. Brik, S. Camardello, A. Srivastava, N. Avram, A. Suchocki, Spin-forbidden transitions in the spectra of transition metal ions and nephelauxetic effect. ECS J. Solid State Sci. Technol. 5, R3067–R3077 (2016)CrossRefGoogle Scholar
  17. 17.
    S. Wang, J. Zhang, D. Luo, F. Gu, D. Tang, Z. Dong, G.E. Tan, W. Que, Transparent ceramics: processing, materials and applications. Prog. Solid State Chem. 41, 20–54 (2013)CrossRefGoogle Scholar
  18. 18.
    V. Sigaev, N. Golubev, E. Ignat’eva, V. Savinkov, M. Campione, R. Lorenzi, F. Meinardi, A. Paleari, Nickel-assisted growth and selective doping of spinel-like gallium oxide nanocrystals in germano-silicate glasses for infrared broadband light emission. Nanotechnology. 23, 015708 (2011)CrossRefGoogle Scholar
  19. 19.
    B. Wu, S. Zhou, J. Ren, D. Chen, X. Jiang, C. Zhu, J. Qiu, Broadband infrared photoluminescence from transparent glass-ceramics containing Ni2+-doped β-Ga2O3 nanocrystals. Appl. Phys. B 87, 697–699 (2007)CrossRefGoogle Scholar
  20. 20.
    T. Suzuki, G.S. Murugan, Y. Ohishi, Optical properties of transparent Li2O–Ga2O3–SiO2 glass-ceramics embedding Ni-doped nanocrystals. Appl. Phys. Lett. 86, 131903 (2005)CrossRefGoogle Scholar
  21. 21.
    L. Cormier, Nucleation in glasses-new experimental findings and recent theories. Procedia Mater. Sci. 7, 60–71 (2014)CrossRefGoogle Scholar
  22. 22.
    P. Loiko, O. Dymshits, A. Zhilin, I. Alekseeva, K. Yumashev, Influence of NiO on phase transformations and optical properties of ZnO–Al2O3–SiO2 glass-ceramics nucleated by TiO2 and ZrO2. Part II. Optical absorption and photoluminescence. J. Non-Cryst. Solids 376, 99–105 (2013)CrossRefGoogle Scholar
  23. 23.
    K. Baral, A. Li, W.-Y. Ching, Ab initio modeling of structure and properties of single and mixed alkali silicate glasses. J. Phys. Chem. A 121, 7697–7708 (2017)CrossRefGoogle Scholar
  24. 24.
    N. Karpukhina, R. Hill, R. Law, Crystallisation in oxide glasses-a tutorial review. Chem. Soc. Rev. 43, 2174–2186 (2014)CrossRefGoogle Scholar
  25. 25.
    J. Zhao, R. Ma, X. Chen, B. Kang, X. Qiao, J. Du, X. Fan, U. Ross, From phase separation to nanocrystallization in fluorosilicate glasses: structural design of highly luminescent glass-ceramics. J. Phys. Chem. C 120, 17726–17732 (2016)CrossRefGoogle Scholar
  26. 26.
    W. Zheng, M. Lin, J. Cheng, Effect of phase separation on the crystallization and properties of lithium aluminosilicate glass-ceramics. Glass Phys. Chem. 39, 142–149 (2013)CrossRefGoogle Scholar
  27. 27.
    B. Wu, J. Qiu, N. Jiang, S. Zhou, J. Ren, D. Chen, X. Jiang, C. Zhu, Optical properties of transparent alkali gallium silicate glass-ceramics containing Ni2+-doped β-Ga2O3 nanocrystals. J. Mater. Res. 22, 3410–3414 (2007)CrossRefGoogle Scholar
  28. 28.
    J. Donegan, F. Bergin, T. Glynn, G. Imbusch, J. Remeika, The optical spectroscopy of LiGa5O8:Ni2+. J. Photoluminescence 35, 57–63 (1986)CrossRefGoogle Scholar
  29. 29.
    M.A. Ali, J. Ren, X. Liu, X. Qiao, J. Qiu, Understanding enhanced upconversion photoluminescence in oxyfluoride glass-ceramics based on local structure characterizations and molecular dynamics simulations. J. Phys. Chem. C 121, 15384–15391 (2017)CrossRefGoogle Scholar
  30. 30.
    R. Ceccato, R.D. Maschio, S. Gialanella, G. Mariotto, M. Montagna, F. Rossi, M. Ferrari, K. Lipinska-Kalita, Nucleation of Ga2O3 nanocrystals in the K2O–Ga2O3–SiO2 glass system. J. Appl. Phys. 90, 2522–2527 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and EngineeringZhejiang UniversityHangzhouChina
  2. 2.School of Material Science and EngineeringZhejiang UniversityHangzhouChina
  3. 3.Departments of Physics, College of Natural and Computational ScienceHaramaya UniversityHaramayaEthiopia

Personalised recommendations