Advertisement

A highly selective Ag+ sensor based on 8-hydroxyquinoline functionalized graphene oxide -silica nanosheet and its logic gate behaviour

  • Hassan Goldooz
  • Alireza Badiei
  • Ghasem Shiravand
  • Jahan B. GhasemiEmail author
  • Ghodsi Mohammadi Ziarani
Article
  • 11 Downloads

Abstract

An 8-hydroxyquinoline functionalized graphene oxide-mesoporous silica nanocomposite (GS-Q) was synthesized and its fluorescence properties were studied to evaluate the sensing capability of GS-Q toward metal cations. By selection of the appropriate excitation wavelength as 360 nm, the aqueous suspension of GS-Q showed a broad emission peak around 480 nm that was influenced by some cations such as alkaline earth and transition metal ions. Besides, a second-order scattering (SOS) signal, amounting to twice the excitation wavelength 720 nm, was observed in the emission spectra that selectively responded to Ag+ ions in the presence of other metal ions. The linear response of the SOS signal to the concentration of Ag+ makes for a versatile and selective probe for the detection of silver ions based on the enhancement of the SOS signal. Furthermore, the remarkable dual-output signal effect of GS-Q was exploited to study the logic behavior of GS-Q in the aqueous media and consequently a solid support logic circuit was constructed by producing two optical outputs under the stimulation of Al3+, Fe3+ and Ag+ ions, as inputs.

Notes

Acknowledgements

The authors thank the University of Tehran Research Councils for support of this work.

References

  1. 1.
    B. Su, Z.-C. Cao, Z.-J. Shi, Acc. Chem. Res. 48, 886 (2015).  https://doi.org/10.1021/ar500345f CrossRefGoogle Scholar
  2. 2.
    J.E. Zweig, D.E. Kim, T.R. Newhouse, Chem. Rev. 117, 11680 (2017).  https://doi.org/10.1021/acs.chemrev.6b00833 CrossRefGoogle Scholar
  3. 3.
    L. Fabbrizzi, M. Licchelli, P. Pallavicini, Acc. Chem. Res. 32, 846 (1999).  https://doi.org/10.1021/ar990013l CrossRefGoogle Scholar
  4. 4.
    D.R. Smith, F.R. Fickett, J. Res. Nat. Inst. Stand. Technol. 100, 119 (1995).  https://doi.org/10.6028/jres.100.012 CrossRefGoogle Scholar
  5. 5.
    R. Manepalli, F. Stepniak, S.A. Bidstrup-Allen, P.A. Kohl, IEEE Trans. Adv. Packag. 22, 4 (1999).  https://doi.org/10.1109/6040.746536 CrossRefGoogle Scholar
  6. 6.
    S. Pillai, M.A. Green, Sol. Energy Mater. Sol. Cells 94, 1481 (2010).  https://doi.org/10.1016/j.solmat.2010.02.046 CrossRefGoogle Scholar
  7. 7.
    S. Achmad, Salmiati, S.M. Razman, B.H.K. Ahmad, H. Tony, N. Hadi, J. Chin. Chem. Soc. 64, 732 (2017).  https://doi.org/10.1002/jccs.201700067 CrossRefGoogle Scholar
  8. 8.
    A. Ivask, A. ElBadawy, C. Kaweeteerawat et al., ACS Nano 8, 374 (2013).  https://doi.org/10.1021/nn4044047 CrossRefGoogle Scholar
  9. 9.
    S. Kittler, C. Greulich, J. Diendorf, M. Köller, M. Epple, Chem. Mater. 22, 4548 (2010).  https://doi.org/10.1021/cm100023p CrossRefGoogle Scholar
  10. 10.
    C. Levard, E.M. Hotze, G.V. Lowry, G.E. Brown, Environ. Sci. Technol. 46, 6900 (2012).  https://doi.org/10.1021/es2037405 CrossRefGoogle Scholar
  11. 11.
    E. Navarro, F. Piccapietra, B. Wagner et al., Environ. Sci. Technol. 42, 8959 (2008).  https://doi.org/10.1021/es801785m CrossRefGoogle Scholar
  12. 12.
    A. Panacek, R. Prucek, D. Safarova et al., Environ. Sci. Technol. 45, 4974 (2011).  https://doi.org/10.1021/es104216b CrossRefGoogle Scholar
  13. 13.
    M. van der Zande, R.J. Vandebriel, E. Van Doren et al., ACS Nano 6, 7427 (2012).  https://doi.org/10.1021/nn302649p CrossRefGoogle Scholar
  14. 14.
    S. Vasileiadis, G. Brunetti, E. Marzouk et al., Environ. Sci. Technol. (2018).  https://doi.org/10.1021/acs.est.8b00677 CrossRefGoogle Scholar
  15. 15.
    S.S. Tan, Y.N. Teo, E.T. Kool, Org. Lett. 12, 4820 (2010).  https://doi.org/10.1021/ol1019794 CrossRefGoogle Scholar
  16. 16.
    Z. Wang, J. Zhao, Z. Li, J. Bao, Z. Dai, Anal. Chem. 89, 6815 (2017).  https://doi.org/10.1021/acs.analchem.7b01238 CrossRefGoogle Scholar
  17. 17.
    A.R. Firooz, A.A. Ensafi, N. Kazemifard, R. Khalifeh, Sens. Actuators, B 176, 598 (2013).  https://doi.org/10.1016/j.snb.2012.10.045 CrossRefGoogle Scholar
  18. 18.
    H. Wang, L. Xue, H. Jiang, Org. Lett. 13, 3844 (2011).  https://doi.org/10.1021/ol2013632 CrossRefGoogle Scholar
  19. 19.
    Z. Dong, Z. Dong, J. Ren et al., Microporous Mesoporous Mater. 135, 170 (2010).  https://doi.org/10.1016/j.micromeso.2010.07.006 CrossRefGoogle Scholar
  20. 20.
    C. Qin, W.-Y. Wong, L. Wang, Macromolecules 44, 483 (2011).  https://doi.org/10.1021/ma102373y CrossRefGoogle Scholar
  21. 21.
    Y. Zhang, H. Jiang, X.D. Wang, Cytidine-stabilized gold nanocluster as a fluorescence turn-on and turn-off probe for dual functional detection of Ag+ and Hg2+. Anal. Chim. Acta 870, 1–7 (2015)CrossRefGoogle Scholar
  22. 22.
    M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Nano Lett. 8, 3498 (2008).  https://doi.org/10.1021/nl802558y CrossRefGoogle Scholar
  23. 23.
  24. 24.
    B.C. Marin, S.E. Root, A.D. Urbina et al., ACS Omega 2, 626 (2017).  https://doi.org/10.1021/acsomega.7b00044 CrossRefGoogle Scholar
  25. 25.
    Y.J. Park, S.-K. Lee, M.-S. Kim, H. Kim, J.-H. Ahn, ACS Nano 8, 7655 (2014).  https://doi.org/10.1021/nn503446f CrossRefGoogle Scholar
  26. 26.
    N. Atar, M.L. Yola, T. Eren, Appl. Surf. Sci. 362, 315 (2016).  https://doi.org/10.1016/j.apsusc.2015.11.222 CrossRefGoogle Scholar
  27. 27.
    V.K. Gupta, M.L. Yola, N. Atar, Z. Ustundağ, A.O. Solak, Electrochim. Acta 112, 541 (2013).  https://doi.org/10.1016/j.electacta.2013.09.011 CrossRefGoogle Scholar
  28. 28.
    M.L. Yola, N. Atar, Z. Üstündağ, A.O. Solak, J. Electroanal. Chem. 698, 9 (2013).  https://doi.org/10.1016/j.jelechem.2013.03.016 CrossRefGoogle Scholar
  29. 29.
    M.L. Yola, T. Eren, N. Atar, Electrochim. Acta 125, 38 (2014).  https://doi.org/10.1016/j.electacta.2014.01.074 CrossRefGoogle Scholar
  30. 30.
    M.L. Yola, V.K. Gupta, N. Atar, Mater. Sci. Eng., C 61, 368 (2016).  https://doi.org/10.1016/j.msec.2015.12.057 CrossRefGoogle Scholar
  31. 31.
    M.L. Yola, V.K. Gupta, T. Eren, A.E. Şen, N. Atar, Electrochim. Acta 120, 204 (2014).  https://doi.org/10.1016/j.electacta.2013.12.086 CrossRefGoogle Scholar
  32. 32.
    O. Akyıldırım, H. Medetalibeyoğlu, S. Manap et al., Int. J. Electrochem. Sci. 10, 7743 (2015)Google Scholar
  33. 33.
    J. Gholami, M. Manteghian, A. Badiei, M. Javanbakht, H. Ueda, Fuller. Nanotub. Carbon Nanostruct. 23, 878 (2015).  https://doi.org/10.1080/1536383X.2015.1012583 CrossRefGoogle Scholar
  34. 34.
    F. Liu, S. Chung, G. Oh, T.S. Seo, ACS Appl. Mater. Interfaces. 4, 922 (2012).  https://doi.org/10.1021/am201590z CrossRefGoogle Scholar
  35. 35.
    R. Mitra, A. Saha, ACS Sust. Chem. Eng. 5, 604 (2017).  https://doi.org/10.1021/acssuschemeng.6b01971 CrossRefGoogle Scholar
  36. 36.
    J. Gholami, M. Manteghian, A. Badiei, H. Ueda, M. Javanbakht, Luminescence 31, 229 (2016).  https://doi.org/10.1002/bio.2950 CrossRefGoogle Scholar
  37. 37.
    A. Kundu, R.K. Layek, A. Kuila, A.K. Nandi, ACS Appl. Mater. Interfaces. 4, 5576 (2012).  https://doi.org/10.1021/am301467z CrossRefGoogle Scholar
  38. 38.
    Z.-M. Wang, W. Wang, N. Coombs, N. Soheilnia, G.A. Ozin, ACS Nano 4, 7437 (2010).  https://doi.org/10.1021/nn102618n CrossRefGoogle Scholar
  39. 39.
    S.K. Maji, S. Sreejith, A.K. Mandal, X. Ma, Y. Zhao, ACS Appl. Mater. Interfaces. 6, 13648 (2014).  https://doi.org/10.1021/am503110s CrossRefGoogle Scholar
  40. 40.
    Y. Wang, K. Wang, J. Zhao et al., J. Am. Chem. Soc. 135, 4799 (2013).  https://doi.org/10.1021/ja312221g CrossRefGoogle Scholar
  41. 41.
    W. Li, K. Xu, L. Xu, J. Hu, F. Ma, Y. Guo, Appl. Surf. Sci. 256, 3183 (2010)CrossRefGoogle Scholar
  42. 42.
    B.J. Scott, G. Wirnsberger, G.D. Stucky, Chem. Mater. 13, 3140 (2001).  https://doi.org/10.1021/cm0110730 CrossRefGoogle Scholar
  43. 43.
    O.A. Anunziata, A.R. Beltramone, M.L. Martínez, L.L. Belon, J. Colloid Interface Sci. 315, 184 (2007)CrossRefGoogle Scholar
  44. 44.
    A. Badiei, L. Bonneviot, N. Crowther, G.M. Ziarani, J. Organomet. Chem. 691, 5911 (2006)CrossRefGoogle Scholar
  45. 45.
    A.-R. Badiei, L. Bonneviot, Inorg. Chem. 37, 4142 (1998).  https://doi.org/10.1021/ic971633q CrossRefGoogle Scholar
  46. 46.
    J.R. Matos, L.P. Mercuri, M. Kruk, M. Jaroniec, Chem. Mater. 13, 1726 (2001).  https://doi.org/10.1021/cm000964p CrossRefGoogle Scholar
  47. 47.
    S.K. Maji, A.K. Mandal, K.T. Nguyen, P. Borah, Y. Zhao, ACS Appl. Mater. Interfaces. 7, 9807 (2015).  https://doi.org/10.1021/acsami.5b01758 CrossRefGoogle Scholar
  48. 48.
    L. Shang, T. Bian, B. Zhang et al., Angew. Chem. Int. Ed. 53, 250 (2014).  https://doi.org/10.1002/anie.201306863 CrossRefGoogle Scholar
  49. 49.
    L. Wu, J. Wang, H. Sun, J. Ren, X. Qu, Adv. Healthc. Mater. 3, 588 (2014).  https://doi.org/10.1002/adhm.201300228 CrossRefGoogle Scholar
  50. 50.
    L.-N. Sun, H.-J. Zhang, J.-B. Yu et al., Langmuir 24, 5500 (2008).  https://doi.org/10.1021/la7036108 CrossRefGoogle Scholar
  51. 51.
    H. Wang, J. Huang, S. Wu et al., Mater. Lett. 60, 2662 (2006)CrossRefGoogle Scholar
  52. 52.
    A. Badiei, H. Goldooz, G.M. Ziarani, Appl. Surf. Sci. 257, 4912 (2011).  https://doi.org/10.1016/j.apsusc.2010.12.146 CrossRefGoogle Scholar
  53. 53.
    A. Badiei, H. Goldooz, G.M. Ziarani, A. Abbasi, J. Colloid Interface Sci. 357, 63 (2011).  https://doi.org/10.1016/j.jcis.2011.01.049 CrossRefGoogle Scholar
  54. 54.
    L.-N. Sun, Y. Zhang, J.-B. Yu et al., Microporous Mesoporous Mater. 115, 535 (2008)CrossRefGoogle Scholar
  55. 55.
    M. Albrecht, M. Fiege, O. Osetska, Coord. Chem. Rev. 252, 812 (2008)CrossRefGoogle Scholar
  56. 56.
    J.P. Phillips, Chem. Rev. 56, 271 (1956).  https://doi.org/10.1021/cr50008a003 CrossRefGoogle Scholar
  57. 57.
    R.T. Bronson, M. Montalti, L. Prodi et al., Tetrahedron 60, 11139 (2004)CrossRefGoogle Scholar
  58. 58.
    I. Devol, E. Bardez, J. Colloid Interface Sci. 200, 241 (1998)CrossRefGoogle Scholar
  59. 59.
    E. Sapelli, T.A.S. Brandão, H.D. Fiedler, F. Nome, J. Colloid Interface Sci. 314, 214 (2007)CrossRefGoogle Scholar
  60. 60.
    K. Soroka, R.S. Vithanage, D.A. Phillips, B. Walker, P.K. Dasgupta, Anal. Chem. 59, 629 (1987).  https://doi.org/10.1021/ac00131a019 CrossRefGoogle Scholar
  61. 61.
    M.R. Ganjali, V.K. Gupta, M. Hosseini et al., Talanta 88, 684 (2012).  https://doi.org/10.1016/j.talanta.2011.11.065 CrossRefGoogle Scholar
  62. 62.
    M.R. Ganjali, M. Hosseini, Z. Memari et al., Anal. Chim. Acta 708, 107 (2011).  https://doi.org/10.1016/j.aca.2011.09.032 CrossRefGoogle Scholar
  63. 63.
    M. Hosseini, M.R. Ganjali, F. Aboufazeli et al., Sens. Actuators, B 184, 93 (2013).  https://doi.org/10.1016/j.snb.2013.04.059 CrossRefGoogle Scholar
  64. 64.
    M. Hosseini, M.R. Ganjali, Z. Rafiei-Sarmazdeh et al., Anal. Chim. Acta 771, 95 (2013).  https://doi.org/10.1016/j.aca.2013.01.064 CrossRefGoogle Scholar
  65. 65.
    M. Hosseini, V.K. Gupta, M.R. Ganjali et al., Anal. Chim. Acta 715, 80 (2012).  https://doi.org/10.1016/j.aca.2011.12.021 CrossRefGoogle Scholar
  66. 66.
    H. Zhang, L.-F. Han, K.A. Zachariasse, Y.-B. Jiang, Org. Lett. 7, 4217 (2005).  https://doi.org/10.1021/ol051614h CrossRefGoogle Scholar
  67. 67.
    R. Cheng, L. Li, S. Ou et al., RSC Adv. 6, 36218 (2016).  https://doi.org/10.1039/C6RA00048G CrossRefGoogle Scholar
  68. 68.
    W. Jiang, D.B. Hibbert, G. Moran, J. Herrmann, A.K. Jamting, V.A. Coleman, RSC Adv. 3, 7367 (2013).  https://doi.org/10.1039/C3RA22727H CrossRefGoogle Scholar
  69. 69.
    J. Li, X. Yang, J. Yang, L. Lai, RSC Adv. 6, 25887 (2016).  https://doi.org/10.1039/C5RA25851K CrossRefGoogle Scholar
  70. 70.
    W. Sun, L. Wang, T. Wu, Y. Pan, G. Liu, J. Mater. Chem. A 3, 16843 (2015)CrossRefGoogle Scholar
  71. 71.
    S.G. Liu, N. Li, L. Han, L.J. Li, N.B. Li, H.Q. Luo, Mater. Horiz. (2018).  https://doi.org/10.1039/C7MH00872D CrossRefGoogle Scholar
  72. 72.
    L. Kong, Z. Liu, S. Liu, D. Wang, Anal. Methods 4, 4346 (2012).  https://doi.org/10.1039/C2AY26050F CrossRefGoogle Scholar
  73. 73.
    Q. Xu, Z. Liu, X. Hu, L. Kong, S. Liu, Analyst 137, 868 (2012).  https://doi.org/10.1039/C2AN15981C CrossRefGoogle Scholar
  74. 74.
    E. Wang, J. Yang, D. Yu, RSC Adv. 4, 34204 (2014).  https://doi.org/10.1039/C4RA04613G CrossRefGoogle Scholar
  75. 75.
    F. Tavakoli, M. Salavati-Niasari, J. Ind. Eng. Chem. 20, 3170 (2014).  https://doi.org/10.1016/j.jiec.2013.11.061 CrossRefGoogle Scholar
  76. 76.
    N. Lang, A. Tuel, Chem. Mater. 16, 1961 (2004).  https://doi.org/10.1021/cm030633n CrossRefGoogle Scholar
  77. 77.
    R.J. Magee, L. Gordon, Talanta 10, 851 (1963).  https://doi.org/10.1016/0039-9140(63)80245-3 CrossRefGoogle Scholar
  78. 78.
    K. Nakamoto, N. Ohkaku, Inorg. Chem. 10, 798 (1971).  https://doi.org/10.1021/ic50098a027 CrossRefGoogle Scholar
  79. 79.
    J.W. Nugent, H. Lee, H.-S. Lee, J.H. Reibenspies, R.D. Hancock, Inorg. Chem. 53, 9014 (2014).  https://doi.org/10.1021/ic5008632 CrossRefGoogle Scholar
  80. 80.
    N.J. Williams, N.E. Dean, D.G. VanDerveer, R.C. Luckay, R.D. Hancock, Inorg. Chem. 48, 7853 (2009).  https://doi.org/10.1021/ic900737q CrossRefGoogle Scholar
  81. 81.
    A.P. de Silva, H.Q.N. Gunaratne, T. Gunnlaugsson et al., Chem. Rev. 97, 1515 (1997).  https://doi.org/10.1021/cr960386p CrossRefGoogle Scholar
  82. 82.
    M.E. Díaz-García, R. Badía-Laíño, in Encyclopedia of Analytical Science, 3rd edn., ed. by P. Worsfold, C. Poole, A. Townshend, M. Miró (Academic Press, Oxford, 2019), p. 256.  https://doi.org/10.1016/B978-0-12-409547-2.11180-1 CrossRefGoogle Scholar
  83. 83.
    G. de Ruiter, Y.H. Wijsboom, N. Oded, M.E. van der Boom, ACS Appl. Mater. Interfaces. 2, 3578 (2010).  https://doi.org/10.1021/am1007497 CrossRefGoogle Scholar
  84. 84.
    D. Fan, C. Shang, W. Gu, E. Wang, S. Dong, ACS Appl. Mater. Interfaces. 9, 25870 (2017).  https://doi.org/10.1021/acsami.7b07369 CrossRefGoogle Scholar
  85. 85.
    X. Gong, Z. Li, Q. Hu, R. Zhou, S. Shuang, C. Dong, ACS Appl. Mater. Interfaces. 9, 38761 (2017).  https://doi.org/10.1021/acsami.7b11170 CrossRefGoogle Scholar
  86. 86.
    W. Huang, Y. Zhou, J. Du, Y. Deng, Y. He, Anal. Chem. 90, 2384 (2018).  https://doi.org/10.1021/acs.analchem.7b05097 CrossRefGoogle Scholar
  87. 87.
    D.S. Kim, V.M. Lynch, J.S. Park, J.L. Sessler, J. Am. Chem. Soc. 135, 14889 (2013).  https://doi.org/10.1021/ja4080198 CrossRefGoogle Scholar
  88. 88.
    J.Y. Lu, X.X. Zhang, W.T. Huang et al., Anal. Chem. 89, 9734 (2017).  https://doi.org/10.1021/acs.analchem.7b01498 CrossRefGoogle Scholar
  89. 89.
    G.S. Tulevski, A.D. Franklin, D. Frank et al., ACS Nano 8, 8730 (2014).  https://doi.org/10.1021/nn503627h CrossRefGoogle Scholar
  90. 90.
    S. Zhang, W. Shi, K.-B. Li, F. Chen, J. Su, D.-M. Han, Sens. Actuators, B 273, 408 (2018).  https://doi.org/10.1016/j.snb.2018.06.027 CrossRefGoogle Scholar
  91. 91.
    X. Wang, H. Yang, Appl. Surf. Sci. 277, 257 (2013).  https://doi.org/10.1016/j.apsusc.2013.04.036 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemistry, College of ScienceUniversity of TehranTehranIran
  2. 2.Department of ChemistryAlzahra UniversityTehranIran

Personalised recommendations