Advertisement

Increasing sensitivity of ZnO nanoparticles by hydrogenation and sensing reaction mechanism

  • Cuijin Pei
  • Bin Liu
  • Junfang Liu
  • Yukun Yuan
  • Miao Wang
  • Ye Wang
  • Hua Zhao
  • Heqing YangEmail author
Article
  • 21 Downloads

Abstract

Sensing reaction mechanism is decisive for improvement of the sensing property of metal oxide sensing materials. Herein, we demonstrated a conceptually different approach to improving sensing property of ZnO nanoparticles by increasing quantity of the surface unsaturated 3-coordinated Zn atoms through hydrogenation. The surface 3-coordinated Zn atoms play a pivotal role in sensing reaction. They can produce electrons, adsorb O2 and catalyze the gas sensing reaction between the adsorbed oxygen and test gas. A sensing mechanism of the unsaturated Zn atom serving as a sensing reactive site is presented for the first time. The mechanism provides a deep understanding for sensing and catalytic reaction mechanisms. In addition, the sensing performance of other sensing materials and reactive activity of catalysts may be enhanced by increasing concentration of surface unsaturated metal atom through hydrogenation.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51872178, 51702204 and 201501116), the National Key Research Program of China (Grant No. 2016YFA0202403), DNL Cooperation Fund CAS (Grant No. DNL180311), China Postdoctoral Science Foundation (Grant No. 2017M613051), and the 111 Project (Grant No. B14041).

References

  1. 1.
    Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang, X.L. He, J.P. Li, C.L. Lin, Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl. Phys. Lett. 84, 3654–3656 (2004)CrossRefGoogle Scholar
  2. 2.
    M.R. Alenezi, S.J. Henley, N.G. Emerson, S.R.P. Silva, From 1D and 2D ZnO nanostructures to 3D hierarchical structures with enhanced gas sensing properties. Nanoscale 6, 235–247 (2014)CrossRefGoogle Scholar
  3. 3.
    X. Su, H. Zhao, F. Xiao, J. Jian, J. Wang, Synthesis of flower-like 3D ZnO microstructures and their size-dependent ethanol sensing properies. Ceram. Int. 38, 1643–1647 (2012)CrossRefGoogle Scholar
  4. 4.
    E.R. Leite, I.T. Weber, E. Longo, J.A. Varela, A new method to control particle size and particle size distribution of SnO2 nanoparticles for gas sensor application. Adv. Mater. 12, 965–968 (2000)CrossRefGoogle Scholar
  5. 5.
    X.G. Han, M.S. Jin, S.F. Xie, Q. Kuang, Z.Y. Jiang, Y.Q. Jiang, Z.X. Xie, L.S. Zheng, Synthesis of tin dioxide octahedral nanoparticles with exposed high-energy 221 facets and enhanced gas-sensing properties. Angew. Chem. Int. Ed. 121, 9344–9347 (2009)CrossRefGoogle Scholar
  6. 6.
    X.T. Yin, W.D. Zhou, J. Li, Q. Wang, F.Y. Wu, D. Dastan, D. Wang, H. Garmestani, X.M. Wang, Ş. Ţălu, A highly sensitivity and selectivity Pt-SnO2 nanoparticles for sensing applications at extremely low level hydrogen gas detection. J. Alloys Compd. 805, 229–236 (2019)CrossRefGoogle Scholar
  7. 7.
    X.T. Yin, W.D. Zhou, J. Li, P. Lv, Q. Wang, D. Wang, F.Y. Wu, D. Dastan, H. Garmestani, Z.C. Shi, Ş. Ţălu, Tin dioxide nanoparticles with high sensitivity and selectivity for gas sensors at sub-ppm level of hydrogen gas detection. J. Mater. Sci.: Mater. Electron. 30, 14687–14694 (2019)Google Scholar
  8. 8.
    L.Q. Sun, X. Han, K. Liu, S. Yin, Q.L. Chen, Q. Kuang, X.G. Han, Z.X. Xie, C. Wang, Template-free construction of hollow α-Fe2O3 hexagonal nanocolumn particles with an exposed special surface for advanced gas sensing properties. Nanoscale 7, 9416–9420 (2015)CrossRefGoogle Scholar
  9. 9.
    J.J. Ouyang, J. Pei, Q. Kuang, Z.X. Xie, L.S. Zheng, Supersaturation-controlled shape evolution of α-Fe2O3 nanocrystals and their facet-dependent catalytic and sensing properties. ACS Appl. Mater. Interfaces 6, 12505–12514 (2014)CrossRefGoogle Scholar
  10. 10.
    M. Curreli, C. Li, Y.H. Sun, B. Lei, M.A. Gundersen, M.E. Thompson, C.W. Zhou, Selective functionalization of In2O3 nanowire mat devices for biosensing applications. J. Am. Chem. Soc. 127, 6922–6923 (2005)CrossRefGoogle Scholar
  11. 11.
    Y.Y. He, X. Zhao, Y. Cao, X.X. Zou, G.D. Li, Facile synthesis of In2O3 nanospheres with excellent sensitivity totrace explosive nitro-compounds. Sens. Actuators B 228, 295–301 (2016)CrossRefGoogle Scholar
  12. 12.
    M. Wang, Y. Wang, J.F. Liu, C.J. Pei, B. Liu, Y.K. Yuan, H. Zhao, S.Z. Liu, H.Q. Yang, Enhanced sensing performance and sensing mechanism of hydrogenated NiO particles. Sens. Actuators B 250, 208–214 (2017)CrossRefGoogle Scholar
  13. 13.
    X.Y. Lai, G.X. Shen, P. Xue, B.Q. Yan, H. Wang, P. Li, W.T. Xia, J.Z. Fang, Ordered mesoporous NiO with thin pore walls and its enhanced sensing performance for formaldehyde. Nanoscale 7, 4005–4012 (2015)CrossRefGoogle Scholar
  14. 14.
    J.T. Zhang, J.F. Liu, Q. Peng, X. Wang, Y.D. Li, Nearly monodisperse Cu2O and CuO nanospheres: preparation and applications for sensitive gas sensors. Chem. Mater. 18, 867–871 (2006)CrossRefGoogle Scholar
  15. 15.
    Q.Q. Jia, H.M. Ji, D.H. Wang, X. Bai, X.H. Sun, Z.G. Jin, Exposed facets induced enhanced acetone selective sensing property of nanostructured tungsten oxide. J. Mater. Chem. A 2, 13602–13611 (2014)CrossRefGoogle Scholar
  16. 16.
    L.Q. Shi, J.B. Cui, F. Zhao, D.J. Wang, T.F. Xie, Y.H. Lin, High-performance formaldehyde gas-sensors based on three dimensional center-hollow ZnO. Phys. Chem. Chem. Phys. 17, 31316–31323 (2015)CrossRefGoogle Scholar
  17. 17.
    M. Sinha, R. Mahapatra, B. Mondal, T. Maruyama, R. Ghosh, Ultrafast and reversible gas-sensing properties of ZnO nanowire arrays grown by hydrothermal technique. J. Phys. Chem. C 120, 3019–3025 (2016)CrossRefGoogle Scholar
  18. 18.
    X.M. Wang, F.Z. Sun, Y.Q. Duan, Z.P. Yin, W. Luo, Y.A. Huang, J.K. Chen, Highly sensitive, temperature-dependent gas sensor based on hierarchical ZnO nanorod arrays. J. Mater. Chem. C 3, 11397–11405 (2015)CrossRefGoogle Scholar
  19. 19.
    J.Q. Xu, Z.G. Xue, N. Qin, Z.X. Cheng, Q. Xiang, The crystal facet-dependent gas sensing properties of ZnO nanosheets: experimental and computational study. Sens. Actuators B 242, 148–157 (2017)CrossRefGoogle Scholar
  20. 20.
    L. Li, F. Yang, J. Yu, X.W. Wang, L.N. Zhang, Y. Chen, H.Q. Yang, In situ growth of ZnO nanowires on Zn comb-shaped interdigitating electrodes and their photosensitive and gas-sensing characteristics. Mater. Res. Bull. 47, 3971–3975 (2012)CrossRefGoogle Scholar
  21. 21.
    Z.D. Hu, Q. Chen, Z. Li, Y. Yu, L.M. Peng, Large-scale and rapid synthesis of ultralong ZnO nanowire films via anodization. J. Phys. Chem. C 114, 881–889 (2010)CrossRefGoogle Scholar
  22. 22.
    J. Rao, A. Yu, C.L. Shao, X.F. Zhou, Construction of hollow and mesoporous ZnO microsphere: a facile synthesis and sensing property. ACS Appl. Mater. Interfaces 4, 5346–5352 (2012)CrossRefGoogle Scholar
  23. 23.
    M. Chen, Z.H. Wang, D.M. Han, F.B. Gu, G.S. Guo, Porous ZnO polygonal nanoflakes: synthesis, use in high-sensitivity NO2 gas sensor, and proposed mechanism of gas sensing. J. Phys. Chem. C 115, 12763–12773 (2011)CrossRefGoogle Scholar
  24. 24.
    J.L. Wang, C.J. Pei, L.J. Cheng, W.P. Wan, Q. Zhao, H.Q. Yang, S.Z. Liu, Responses of three-dimensional porous ZnO foam structures to the trace level of triethylamine and ethanol. Sens. Actuators B 223, 650–657 (2016)CrossRefGoogle Scholar
  25. 25.
    Q. Zhao, Q. Shen, F. Yang, H. Zhao, B. Liu, Q. Liang, A.H. Wei, H.Q. Yang, S.Z. Liu, Direct growth of ZnO nanodisk networks with an exposed (0001) facet on Au comb-shaped interdigitating electrodes and the enhanced gas-sensing property of polar 0001 surfaces. Sens. Actuators B 195, 71–79 (2014)CrossRefGoogle Scholar
  26. 26.
    Z.H. Wang, Z.W. Tian, D.M. Han, F.B. Gu, Highly sensitive and selective ethanol sensor fabricated with In-doped 3DOM ZnO. ACS Appl. Mater. Interfaces 8, 5466–5474 (2016)CrossRefGoogle Scholar
  27. 27.
    S.L. Bai, T. Guo, Y.B. Zhao, R.X. Luo, D.Q. Li, A.F. Chen, C.C. Liu, Mechanism enhancing gas sensing and first-principle calculations of Al-doped ZnO nanostructures. J. Mater. Chem. A 1, 11335–11342 (2013)CrossRefGoogle Scholar
  28. 28.
    H.S. Woo, C.H. Kwak, J.H. Chung, J.H. Lee, Co-doped branched ZnO nanowires for ultraselective and sensitive detection of xylene. ACS Appl. Mater. Interfaces 6, 22553–22560 (2014)CrossRefGoogle Scholar
  29. 29.
    C.M. Chang, M.H. Hon, I.C. Leu, Outstanding H2 sensing performance of Pd nanoparticle-decorated ZnO nanorod arrays and the temperature-dependent sensing mechanisms. ACS Appl. Mater. Interfaces 5, 135–143 (2013)CrossRefGoogle Scholar
  30. 30.
    S. Ghosh, C. RoyChaudhuri, R. Bhattacharya, H. Saha, N. Mukherjee, Palladium-silver-activated ZnO surface: highly selective methane sensor at reasonably low operating temperature. ACS Appl. Mater. Interfaces 6, 3879–3887 (2014)CrossRefGoogle Scholar
  31. 31.
    X.H. Liu, J. Zhang, X.Z. Guo, S.H. Wu, S.R. Wang, Amino acid-assisted one-pot assembly of Au, Pt nanoparticles onto one-dimensional ZnO microrods. Nanoscale 2, 1178–1184 (2010)CrossRefGoogle Scholar
  32. 32.
    X.W. Li, X. Zhou, H. Guo, C. Wang, J.Y. Liu, P. Sun, F.M. Liu, G.Y. Lu, Design of Au@ZnO yolk-shell nanospheres with enhanced gas sensing properties. ACS Appl. Mater. Interfaces 6, 18661–18667 (2014)CrossRefGoogle Scholar
  33. 33.
    C.W. Na, H.S. Woo, I.-D. Kim, J.H. Lee, Selective detection of NO2 and C2H5OH using a Co3O4-decorated ZnO nanowire network sensor. Chem. Commun. 47, 5148–5150 (2011)CrossRefGoogle Scholar
  34. 34.
    D. Barreca, E. Comini, A.P. Ferrucci, A. Gasparotto, C. Maccato, C. Maragno, G. Sberveglieri, E. Tondello, First example of ZnO-TiO2 nanocomposites by chemical vapor deposition: structure, morphology, composition, and gas sensing performances. Chem. Mater. 19, 5642–5649 (2007)CrossRefGoogle Scholar
  35. 35.
    S.L. Bai, S. Chen, Y.B. Zhao, T. Guo, R.X. Luo, D.Q. Li, A.F. Chen, Gas gensing properties of Cd-doped ZnO nanofibers synthesized by the electrospinning method. J. Mater. Chem. A 2, 16697–16706 (2014)CrossRefGoogle Scholar
  36. 36.
    D. Dastan, N. Chaure, M. Kartha, Surfactants assisted solvothermal derived titania nanoparticles: synthesis and simulation. J. Mater. Sci.: Mater. Electron. 28, 7784–7796 (2017)Google Scholar
  37. 37.
    D. Dastan, S.L. Panahi, N.B. Chaure, Characterization of titania thin films grown by dip-coating technique. J. Mater. Sci.: Mater. Electron. 27, 12291–12296 (2016)Google Scholar
  38. 38.
    P.K. Baitha, J. Manam, Structural and spectroscopic diagnosis of ZnO/SnO2 nanocomposite influenced by Eu3+. J. Rare Earths 33, 805–813 (2015)CrossRefGoogle Scholar
  39. 39.
    Y. Chen, H. Zhao, B. Liu, H.Q. Yang, Charge separation between wurtzite ZnO polar 001 surfaces and their enhanced photocatalytic activity. Appl. Catal. B 163, 189–197 (2015)CrossRefGoogle Scholar
  40. 40.
    H.S. Kim, E.S. Jung, W.J. Lee, J.H. Kim, S.O. Ryu, S.Y. Choi, Effects of oxygen concentration on the electrical properties of ZnO films. Ceram. Int. 34, 1097–1101 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Cuijin Pei
    • 1
    • 2
  • Bin Liu
    • 1
  • Junfang Liu
    • 1
  • Yukun Yuan
    • 1
  • Miao Wang
    • 1
  • Ye Wang
    • 1
  • Hua Zhao
    • 1
  • Heqing Yang
    • 1
    Email author
  1. 1.Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, Key Laboratory of Macromolecular Science of Shaanxi Province, School of Materials Science and EngineeringShaanxi Normal UniversityXi’anChina
  2. 2.School of ScienceXi’an University of Posts and TelecommunicationsXi’anChina

Personalised recommendations