Influence of Ti element on the electrical properties of negative temperature coefficient ceramics in Ca–Ce–Ti–W–O system

  • Mingzhe Hu
  • Huayi Xu
  • Yongde HaoEmail author


In the present paper, the effects of TiO2 addition on the electrical properties of negative temperature coefficient (NTC) ceramics in Ca–Ce–Ti–W–O system are elaborately investigated. The semiconducting material was produced by solid state reaction method at 1300 °C in atmosphere. The phase composition, microstructure, and electrical properties of the compounds are studied. The X-ray diffraction analysis shows that the major phase presented in the as sintered samples is CaWO4-type scheelite compound together with a small amount of cubic Ca2TiWO7 compound. The existence of Ce and Ti in CaWO4-type scheelite phase and the presence of \({\text{Ti}}^{3 + }\) are confirmed by energy dispersion spectrum (EDS) and X-ray photoelectron spectroscopy (XPS) analysis, respectively. Electrical properties are studied over the temperature range of 40–600 °C, results reveal that the resistivity at 50 °C ρ50 °C shows a V-type curve with the increase of Ti content and the material constant B300/600 °C varies from 4500 to 6000 Kelvin (abbreviated as K hereafter). Polaron theory reveals that the increase of conductivity with Ti content can be attributed to the hopping mechanism and consequently, the conductivity is effectively tuned by the Ti content.



The authors would like to thank The National Science Foundation of China Nos 61076049 and 51567017; The Physical Electronic Key Discipline of Guizhou Province No. ZDXK201535 as well as The Outstanding Young Scientist Cultivation Program of Guizhou Province No. 201522 for the financial support of the present work.


  1. 1.
    Y. Zhao, C. Zhao, J. Huang, B. Zhao, J. Am. Ceram. Soc. 97, 1016 (2014)CrossRefGoogle Scholar
  2. 2.
    A. Ga, X.L. Yin, Q. Zhao, D.L. He, Y. Zhao, A.M. Chang, J. Mater. Sci.: Mater. Electron. 30, 11117 (2019)Google Scholar
  3. 3.
    X.Q. Li, Y. Luo, G.H. Chen, J. Mater. Sci.: Mater. Electron. 30, 1292 (2019)Google Scholar
  4. 4.
    T. Battault, R. Legros, A. Rousset, J. Mater. Res. 13, 1238 (1998)CrossRefGoogle Scholar
  5. 5.
    S. Fritsch, J. Sarrias, M. Brieu, J. Couderc, J. Baudour, E. Snoeck, A. Rousset, Sol. Stat. Ion. 109, 229 (1998)CrossRefGoogle Scholar
  6. 6.
    F. Guillemot, M. Porte, C. Labrugere, C. Baquey, J. Colloid Interface Sci. 255, 75 (2002)CrossRefGoogle Scholar
  7. 7.
    W.J. Fleming, Sensors J. IEEE 1, 296 (2001)CrossRefGoogle Scholar
  8. 8.
    K. Ishikawa, T. Tamai, M. Kanasashi, M. Miyama, T. Hata, Thermistor sensor for automotive uses. Natl. Tech. Rep. 34, 25–34 (1988)Google Scholar
  9. 9.
    A. Feteira, K. Reichmann, Adv. Sci. Tech. 67, 124 (2011)CrossRefGoogle Scholar
  10. 10.
    D. Houivet, J. Bernard, J.M. Haussonne, J. Europ. Ceram. Soc. 24, 1237 (2004)CrossRefGoogle Scholar
  11. 11.
    A. Feltz, J. Europ. Ceram. Soc. 20, 2367 (2000)CrossRefGoogle Scholar
  12. 12.
    Y. Luo, X. Liu, Mater. Lett. 59, 3881 (2005)CrossRefGoogle Scholar
  13. 13.
    A.N. Kamlo, J. Bernard, C. Lelievre, D. Houivet, J. Europ. Ceram. Soc. 31, 1457 (2011)CrossRefGoogle Scholar
  14. 14.
    X. Q. Li, Y. Luo, G. H. Chen, Ceram Internat (2019) acceptedGoogle Scholar
  15. 15.
    M. Deepa, P.P. Rao, A. Radhakrishnan, K. Sibi, P. Koshy, Mater. Res. Bull. 44, 1481 (2009)CrossRefGoogle Scholar
  16. 16.
    M. Nobre, S. Lanfredi, Appl. Phys. Lett. 82, 2284 (2003)CrossRefGoogle Scholar
  17. 17.
    M. Deepa, P.P. Rao, S. Sumi, A.N.P. Radhakrishnan, P. Koshy, J. Am. Ceram. Soc. 93, 1576 (2010)Google Scholar
  18. 18.
    A. Jostsons, E. Vance, G. Lumprin, K. Hart, B. Ebbinohaus, Titanite Ceramic Phases for Surplus Plutonium Immobilization (Arizona, Tucson, 2000), pp. 76–79Google Scholar
  19. 19.
    T. Matsuoka, Y. Matsuo, H. Sasaki, S. Hayakawa, J. Am. Ceram. Soc. 55, 106 (1972)CrossRefGoogle Scholar
  20. 20.
    J. Chastain, J.F. Moulder, Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data (ULVAC-PHI Inc., Enzo, 1995)Google Scholar
  21. 21.
    S. Patwe, A. Tyagi, Ceram. Int. 32, 545 (2006)CrossRefGoogle Scholar
  22. 22.
    P.P. Rao, S. Liji, K.R. Nair, P. Koshy, Phys. B 349, 115 (2004)CrossRefGoogle Scholar
  23. 23.
    M. Bernardo, T. Jardiel, M. Peiteado, A. Caballero, M. Villegas, J. Alloys Compd. 509, 7290 (2011)CrossRefGoogle Scholar
  24. 24.
    S. Achary, S. Patwe, M. Mathews, J. Phys. Chem. Solid 67, 774 (2006)CrossRefGoogle Scholar
  25. 25.
    F. Larachi, J. Pierre, A. Adnot, A. Bernis, Appl. Surf. Sci. 195, 236 (2002)CrossRefGoogle Scholar
  26. 26.
    D. Mullins, S. Overbury, D. Huntley, Surf. Sci. 409, 307 (1998)CrossRefGoogle Scholar
  27. 27.
    T. Yamashita, P. Hayes, J. Electron Spectrosc. Relat. Phenom. 152, 6 (2006)CrossRefGoogle Scholar
  28. 28.
    S. Karvinen, Sol. Stat. Sci. 5, 811 (2003)CrossRefGoogle Scholar
  29. 29.
    S. Watanabe, X. Ma, C. Song, J. Phys. Chem. C 113, 14249 (2009)CrossRefGoogle Scholar
  30. 30.
    F. Guillemot, M. Porte, C. Labrugere, C. Baquey, J. Colloid Interface Sci. 255, 75 (2002)CrossRefGoogle Scholar
  31. 31.
    I. Austin, N. Mott, Adv. Phys. 18, 41 (1969)CrossRefGoogle Scholar
  32. 32.
    S. Dorris, T.O. Mason, J. Am. Ceram. Soc. 71, 379 (1988)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mechatronics EngineeringGuizhou Minzu UniversityGuiyangChina
  2. 2.School of Optical and Electronic InformationHuazhong University of Sci & Tech.WuhanChina

Personalised recommendations